Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66899
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 顧記華(Jih-Hwa Guh) | |
dc.contributor.author | Ching-Ting Wang | en |
dc.contributor.author | 王敬婷 | zh_TW |
dc.date.accessioned | 2021-06-17T01:14:28Z | - |
dc.date.available | 2022-09-14 | |
dc.date.copyright | 2017-09-14 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-15 | |
dc.identifier.citation | 1. International Agency for Research on Cancer WHO. GLOBOCAN Cancer Fact Sheets: prostate cancer.
http://globocan.iarc.fr/old/FactSheets/cancers/prostate-new.asp. (accessed March 22, 2017). 2. Ministry of Health and Welfare. Cause of Death Statistics 2015. http://www.mohw.gov.tw/EN/Ministry/Statistic.aspx?f_list_no=474&fod_list_no=6241. (accessed March 22, 2017). 3. National Comprehensive Cancer Network. Prostate Cancer (Version 1.2016). https://www.nccn.org/patients/guidelines/prostate/files/assets/common/downloads/files/prostate.pdf. (accessed March 22, 2017). 4. Medscape. Metastatic and Advanced Prostate Cancer. http://emedicine.medscape.com/article/454114-overview#a15. (accessed April 15, 2017). 5. National Cancer Institute. Understanding Prostate Changes: A Health Guide for Men. https://www.cancer.gov/types/prostate/understanding-prostate-changes#prostate-cancer. (accessed March 22, 2017). 6. American Cancer Society. About Prostate Cancer. https://www.cancer.org/cancer/prostate-cancer/about/what-is-prostate-cancer.html. (accessed March 22, 2017). 7. American Cancer Society. Prostate Cancer Risk Factors. https://www.cancer.org/cancer/prostate-cancer/causes-risks-prevention/risk-factors.html. (accessed March 23, 2017). 8. American Cancer Society. Prostate Cancer Stages. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/staging.html. (accessed March 23, 2017). 9. American Joint Committee on Cancer. Prostate Cancer Staging. (7th EDITION) https://cancerstaging.org/references-tools/quickreferences/Documents/ProstateSmall.pdf. (accessed March 23, 2017). 10. American Cancer Society. Survival Rates for Prostate Cancer https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/survivalrates.html. (accessed March 23, 2017). 11. National Cancer Institute. Cancer Stat Facts: Prostate Cancer. https://seer.cancer.gov/statfacts/html/prost.html. (accessed March 23, 2017). 12. Anassi, E.; Ndefo, U.A. Sipuleucel-T (provenge) injection: The first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P. T. 2011, 36(4), 197–202. 13. Russell, P. J.; Jackson, P.; Kingsley, E. A. Prostate Cancer Methods and Protocols; Humana Press: Totowa, NJ, 2003; pp 23–27. 14. Milken M.; Pestell, R. G.; Nevalainen M. T. Prostate cancer: signaling networks, genetics, and new treatment strategies; Humana Press: Totowa, NJ, 2008; p 293. 15. Ioannis, P.; Eleftherios, P. D. Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov. 2008, 7(11), 926–935. 16. Petr, B.; Michal, M.; Vojtech, A.; Ivo, P.; Rene, K. From Na+/K+-ATPase and cardiac glycosides to cytotoxicity and cancer treatment. Anticancer Agents Med. Chem. 2013, 13(7), 1069–1087. 17. Katzung, B. G.; Masters, S. B.; Trevor, A. J. Basic & clinical pharmacology; McGraw-Hill Medical: New York, 2012; pp 212–213. 18. Jiang, T.; Xin, L.; Man, L.; Lijun, L.; Joe, X. X.; Qiqi, Y.; Peter, K.; Manoranjani, T.; Runming, J.; Zijian, X. Changes in sodium pump expression dictate the effects of ouabain on cell growth. J. Biol. Chem. 2009, 284(22), 14921–14929. 19. Hsiao, P. Y.; Chang, H. S.; Lee, S. J.; Lin, C. H.; Chen, I. S. Chemical constituents and cytotoxic activities from the fruits of Reevesia formosana. Planta Med. 2014, 80(16), P2O74. 20. Leu, W. J.; Chang, H. S.; Chan, S. H.; Hsu, J. L.; Yu, C. C.; Hsu, L. C.; Chen, I. S.; Guh, J. H. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS One 2014, 9(1), e87323. 21. Morth, J. P.; Pedersen, B. P.; Buch-Pedersen, M. J.; Andersen, J. P.; Vilsen, B.; Palmgren, M. G.; Nissen, P. A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell Biol. 2011, 12(1), 60–70. 22. King, M. W. The Medical Biochemistry Page. http://themedicalbiochemistrypage.org. (accessed March 31, 2017). 23. Geering, K. FXYD proteins: new regulators of Na-K-ATPase. Am. J. Physiol. Renal Physiol. 2006, 290(2), F241–F250. 24. Kaplan, J. H. Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 2002, 71(1), 511–535. 25. Ogawa, H.; Shinoda, T.; Cornelius, F.; Toyoshima, C. Crystal structure of the sodium-potassium pump (Na+ , K+-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. 2009, 106(33), 13742–13747. 26. Elbaz, H. A.; Stueckle, T. A.; Tse, W.; Rojanasakul, Y.; Dinu, C. Z. Digitoxin and its analogs as novel cancer therapeutics. Exp. Hematol. Oncol. 2012, 1(1), 4. 27. Fuchs, Y.; Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 2015, 16(6), 329– 344. 28. Duprez, L.; Wirawan, E.; Berghe, T. V.; Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect. 2009, 11(13), 1050–1062. 29. Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell 2011, 147(4), 742–758. 30. Labi, V.; Erlacher, M. How cell death shapes cancer. Cell Death Dis. 2015, 6(3), e1675. 31. Wong, R. S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30(1), 87. 32. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 2007, 35(4), 495–516. 33. Degterev, A.; Yuan, J. Expansion and evolution of cell death programmes. Nat. Rev. Mol. Cell Biol. 2008, 9(5), 378–390. 34. Fulda, S.; Debatin, K. M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006, 25(34), 4798–4811. 35. Fuchs, Y.; Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 2015, 16(6), 329– 344. 36. McIlwain, D. R.; Berger, T.; Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013, 5(4), a008656. 37. Shi, Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 2004, 13(8), 1979–1987. 38. Taylor, R. C.; Cullen, S. P.; Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 2008, 9(3), 231–241. 39. Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15(1), 49–63. 40. Chipuk, J. E.; Moldoveanu, T.; Llambi, F.; Parsons, M. J.; Green, D. R. The BCL-2 family reunion. Mol. Cell 2010, 37(3), 299–310. 41. Storr, S. J.; Carragher, N. O.; Frame, M. C.; Parr, T.; Martin, S. G. The calpain system and cancer. Nat. Rev. Cancer 2011, 11(5), 364–374. 42. O'Connor, C. M.; Adams, J. U. Essentials of Cell Biology; NPG Education: Cambridge, MA, 2010; p 84. 43. Vermeulen, K.; Van Bockstaele, D. R.; Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36(3), 131–149. 44. Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 2009, 9(3), 153–166. 45. Hydbring, P.; Malumbres, M.; Sicinski, P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat. Rev. Mol. Cell Biol. 2016, 17(5), 280–292. 46. Besson, A.; Dowdy, S. F.; Roberts, J. M. CDK inhibitors: cell cycle regulators and beyond. Dev. Cell 2008, 14(2), 159–169. 47. Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 2009, 8(7), 547–566. 48. Manning, B. D.; Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 2007, 129(7), 1261–1274. 49. Liu, P.; Cheng, H.; Roberts, T. M.; Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8(8), 627–644. 50. Hemmings, B. A.; Restuccia, D. F. PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol. 2012, 4(9), a011189. 51. Zhang, X.; Tang, N.; Hadden, T. J.; Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta. 2011, 1813(11), 1978–1986. 52. Georgescu, M. M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 2010, 1(12), 1170–1177. 53. Dang, C. V. MYC on the path to cancer. Cell 2012, 149(1), 22–35. 54. Miller, D. M.; Thomas, S. D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and cancer metabolism. Clin. Cancer Res. 2012, 18(20), 5546–5553. 55. Kim, E. K.; Choi, E. J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta. 2010, 1802(4), 396–405. 56. Dhillon, A. S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26(22), 3279–3290. 57. Cargnello, M.; Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75(1), 50–83. 58. Jing, Y. K.; Ohizumi, H.; Kawazoe, N.; Hashimoto, S.; Masuda, Y.; Nakajo, S.; Yoshida, T.; Kuroiwa, Y.; Nakaya, K. Selective inhibitory effect of bufalin on growth of human tumor-cells in-vitro - association with the induction of apoptosis in leukemia Hl-60 Cells. Jpn. J. Cancer Res. 1994, 85(6), 645–651. 59. Bielawski, K.; Winnicka, K.; Bielawska, A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull. 2006, 29(7), 1493–1497. 60. Lopez-Ladzaro, M.; Pastor, N.; Azrak, S. S.; Ayuso, M. J.; Austin, C. A.; Cortes, F. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J. Nat. Prod. 2005, 68(11), 1642–1645. 61. Kometiani, P.; Liu, L.; Askari, A. Digitalis-induced signalingby Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005, 67(3), 929–936. 62. De, S.; Banerjee, S.; Babu, M. N.; Lakhmi, B. M.; Babu, T. S. Review on cardiac glycosides in cancer research and cancer therapy. Am. J. Pharm. Res. 2016, 6(05), 5391–5400. 63. Yu, C. H.; Kan, S. F.; Pu, H. F.; Jea Chien, E.; Wang, P. S. Apoptotic signaling in bufalin‐ and cinobufagin‐treated androgen‐dependent and ‐independent human prostate cancer cells. Cancer Sci. 2008, 99(12), 2467–2476. 64. Lin, H.; Juang, J. L.; Wang, P. S. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J. Biol. Chem. 2004, 279(28), 29302–29307. 65. Gasper, R.; Vandenbussche, G.; Goormaghtigh, E. Ouabain induced modifications of prostate cancer cell lipidome investigated with mass spectrometry and FTIR spectroscopy. Biochim. Biophys. Acta-Biomembr. 2011, 1808(3), 597–605. 66. Huang, Y. T.; Chueh, S. C.; Teng, C. M.; Guh, J. H. Investigation of ouabain-induced anticancer effect in human androgenin dependent prostate cancer PC-3 cells. Biochem. Pharmacol. 2004, 67(4), 727–733. 67. Smith, J. A.; Madden, T.; Vijjeswarapu, M.; Newman, R. A. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem. Pharmacol. 2001, 62(4), 469–472. 68. Geering, K. (2008). Functional roles of Na, K-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 2008, 17(5), 526–532. 69. McConkey, D. J.; Lin, Y.; Nutt, L. K.; Ozel, H. Z.; Newman, R. A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000, 60(14), 3807–3812. 70. Zhu, Z. T.; Sun, H. Z.; Ma, G. Y.; Wang, Z. H.; Li, E. Z.; Liu, Y. Y.; Liu, Y. P. Bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt Pathway. Int. J. Mol. Sci. 2012, 13(2), 2025–2035. 71. Huang, Y. T.; Chueh, S. C.; Teng, C. M.; Guh, J. H. Investigation of ouabain-induced anticancer effect in human androgenin dependent prostate cancer PC-3 cells. Biochem. Pharmacol. 2004, 67(4), 727–733. 72. Panayiotidis, M. I.; Franco, R.; Bortner, C. D.; Cidlowski, J. A. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis. Apoptosis 2010, 15(7), 834–849. 73. Frese, S.; Frese-Schaper, M.; Andres, A. C.; Miescher, D.; Zumkehr, B.; Schmid, R. A. Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Res. 2006, 66(11), 5867–5874. 74. Badr, C. E.; Wurdinger, T.; Nilsson, J.; Niers, J. M.; Whalen, M.; Degterev, A.; Tannous, B. A. Lanatoside C sensitizes glioblastoma cells to tumor necrosis factor-related apoptosis-inducing ligand and induces an alternative cell death pathway. Neuro-Oncology 2011, 13(11), 1213–1224. 75. Juncker, T.; Cerella, C.; Teiten, M. H.; Morceau, F.; Schumacher, M.; Ghelfi, J.; Schnekenburger, M.; Henry, E.; Dicato, M.; Diederich, M. UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochem. Pharmacol. 2011, 81(1), 13–23. 76. Rathna, N. A. T. H.; Raser, K. J.; Stafford, D.; Hajimohammadreza, I.; Posner, A.; Allen, H.; Talanian, R. V.; Yuen, P.; Gilbertsen, R. B.; Wang, K. K. W. Non-erythroid α-spectrin breakdown by calpain and interleukin 1 β-converting-enzyme-like protease (s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem. J. 1996, 319(3), 683–690. 77. Liu, T.; Brown, D. A.; O'Rourke, B. Role of mitochondrial dysfunction in cardiac glycoside toxicity. J. Mol. Cell. Cardiol. 2010, 49(5), 728–736. 78. Perry, S. W.; Norman, J. P.; Barbieri, J.; Brown, E. B.; Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 2011, 50(2), 98. 79. Norman, J. P.; Perry, S. W.; Reynolds, H. M.; Kiebala, M.; Bentley, K. L. D. M.; Trejo, M.; Volsky, D. J.; Maggirwar, S. B.; Dewhurst, S.; Masliah, E.; Gelbard, H. A. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One 2008, 3(11), e3731. 80. Scarlett, J. L.; Sheard, P. W.; Hughes, G.; Ledgerwood, E. C.; Ku, H. H.; Murphy, M. P. Changes in mitochondrial membrane potential during staurosporine‐induced apoptosis in Jurkat cells. FEBS Lett. 2000, 475(3), 267–272. 81. Huang, W. W.; Yang, J. S.; Pai, S. J.; Wu, P. P.; Chang, S. J.; Chueh, F. S.; Fan, M. J.; Chiou, S. M.; Kuo, H. M.; Yeh, C. C.; Chen, P. Y.; Tsuzuki, M.; Chung, J. G. Bufalin induces G(0)/G(1) phase arrest through inhibiting the levels of cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via mitochondrial signaling pathway in T24 human bladder cancer cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2012, 732(1-2), 26–33. 82. Xu, Z. W.; Wang, F. M.; Gao, M. J.; Chen, X. Y.; Hu, W. L.; Xu, R. C. Targeting the Na+/K+-ATPase alpha 1 subunit of hepatoma HepG2 cell line to induce apoptosis and cell cycle arresting. Biol. Pharm. Bull. 2010, 33(5), 743–751. 83. Hiyoshi, H.; Abdelhady, S.; Segerström, L.; Sveinbjørnsson, B.; Nuriya, M.; Lundgren, T. K.; Desfrere, L.; Miyakawa, A.; Yasui, M.; Kogner, P.; Johnsen, J. I.; Andäng, M.; Uhlén, P. Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na, K-ATPase. Br. J. Cancer 2012, 106(11), 1807–1815. 84. Abbas, T.; Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9(6), 400–414. 85. Winters, Z. E.; Hunt, N. C.; Bradburn, M. J.; Royds, J. A.; Turley, H.; Harris, A. L.; Norbury, C. J. Subcellular localisation of cyclin B, Cdc2 and p21WAF1/CIP1 in breast cancer: association with prognosis. Eur. J. Cancer 2001, 37(18), 2405–2412. 86. Zhang, W.; Kornblau, S. M.; Kobayashi, T.; Gambel, A.; Claxton, D.; Deisseroth, A. B. High levels of constitutive WAF1/Cip1 protein are associated with chemoresistance in acute myelogenous leukemia. Clin. Cancer Res. 1995, 1(9), 1051–1057. 87. Baretton, G. B.; Klenk, U.; Diebold, J.; Schmeller, N.; Löhrs, U. Proliferation-and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br. J. Cancer 1999, 80(3-4), 546–555. 88. Ferrandina, G.; Stoler, A.; Fagotti, A.; Fanfani, F.; Sacco, R.; De, P. A.; Mancuso, S.; Scambia, G. p21WAF1/CIP1 protein expression in primary ovarian cancer. Int. J. Oncol. 2000, 17(6), 1231–1236. 89. Elbaz, H. A.; Stueckle, T. A.; Wang, H. Y. L.; O'doherty, G. A.; Lowry, D. T.; Sargent, L. M.; Wang, L.; Dinu, C. Z.; Rojanasakul, Y. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol. Appl. Pharmacol. 2012, 258(1), 51–60. 90. Li, D.; Qu, X. J.; Hou, K. Z.; Zhang, Y.; Dong, Q.; Teng, Y.; Zhang, J. D.; Liu, Y. P. PI3K/Akt is involved in bufalin-induced apoptosis in gastric cancer cells. Anticancer Drugs 2009, 20(1), 59–64. 91. Newman, R. A.; Kondo, Y.; Yokoyama, T.; Dixon, S.; Cartwright, C.; Chan, D.; Johansen, M.; Yang, P. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer Ther. 2007, 6(4), 354–364. 92. Felberbaum‐Corti, M.; Cavalli, V.; Gruenberg, J. Capture of the small GTPase Rab5 by GDI: regulation by p38 MAP kinase. Methods Enzymol. 2005, 403, 367–381. 93. Pfeffer, S.; Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol. 2004, 5(11), 886–896. 94. Cavalli, V.; Vilbois, F.; Corti, M.; Marcote, M. J.; Tamura, K.; Karin, M.; Arkinstall, S.; Gruenberg, J. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI: Rab5 complex. Mol. Cell 2001, 7(2), 421–432. 95. Parker, A. L.; Kavallaris, M.; McCarroll, J. A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 2014, 4, 153. 96. Arce, C. A.; Casale, C. H.; Barra, H. S. Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. FEBS J. 2008, 275(19), 4664–4674. 97. Catalano, M. G.; Poli, R.; Pugliese, M.; Fortunati, N.; Boccuzzi, G. Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr. Relat. Cancer 2007, 14(3), 839–845. 98. Aldana-Masangkay, G. I.; Rodriguez-Gonzalez, A.; Lin, T.; Ikeda, A. K.; Hsieh, Y. T.; Kim, Y. M.; Lomenick, B.; Okemoto, K.; Landaw, E. M.; Wang, D.; Mazitschek, R.; Bradner, J. E.; Sakamoto, K. M. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk. Lymphoma 2011, 52(8), 1544–1555. 99. Catalano, M. G.; Pugliese, M.; Gargantini, E.; Grange, C.; Bussolati, B.; Asioli, S.; Bosco, O.; Poli, R.; Compagnone, A.; Bandino, A.; Mainini, F.; Fortunati, N.; Boccuzzi, G. Cytotoxic activity of the histone deacetylase inhibitor panobinostat (LBH589) in anaplastic thyroid cancer in vitro and in vivo. Int. J. Cancer 2012, 130(3), 694–704. 100. Li, Z.; Zhang, Z.; Xie, J. X.; Li, X.; Tian, J.; Cai, T.; Cui, H.; Ding, H.; Shapiro, J. I.; Xie, Z. Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cells. J. Biol. Chem. 2011, 286(37), 32394–32403. 101. Shibuya, K.; Fukuoka, J.; Fujii, T.; Shimoda, E.; Shimizu, T.; Sakai, H.; Tsukada, K. Increase in ouabain-sensitive K+-ATPase activity in hepatocellular carcinoma by overexpression of Na+ ,K+ -ATPase alpha 3-isoform. Eur. J. Pharmacol. 2010, 638(1-3), 42–46. 102. Espineda, C.; Seligson, D. B.; Ball, W. J.; Rao, J. Y.; Palotie, A.; Horvath, S.; Huang, Y.; Shi, T.; Rajasekaran, A. K. Analysis of the Na,K-ATPase alpha- and beta-subunit expression profiles of bladder cancer using tissue microarrays. Cancer 2003, 97(8), 1859–1868. 103. Rajasekaran, S. A.; Ball, W. J.; Bander, N. H.; Liu, H.; Pardee, J. D.; Rajasekaran, A. K. Reduced expression of beta-subunit of Na,K-ATPase in human clear-cell renal cell carcinoma. J. Urol. 1999, 162(2), 574–580. 104. Sunol, M.; Cusi, V.; Cruz, O.; Kiss, R.; Lefranc, F. Immunohistochemical analyses of alpha 1 and alpha 3 Na+ /K+-ATPase subunit expression in medulloblastomas. Anticancer Res. 2011, 31(3), 953–958. 105. Rajasekaran, S. A.; Huynh, T. P.; Wolle, D. G.; Espineda, C. E.; Inge, L. J.; Skay, A.; Lassman, C.; Nicholas, S. B.; Harper, J. F.; Reeves, A. E.; Ahmed, M. M.; Leatherman, J. M.; Mullin, J. M.; Rajasekaran, A. K. Na, K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis. Mol. Cancer Ther. 2010, 9(6), 1515–1524. 106. Ahmed, Z.; Deyama, Y.; Yoshimura, Y.; Suzuki, K. Cisplatin sensitivity of oral squamous carcinoma cells is regulated by Na+, K+-ATPase activity rather than copper-transporting P-type ATPases, ATP7A and ATP7B. Cancer Chemother. Pharmacol. 2009, 63(4), 643–650. 107. Tummala, R.; Wolle, D.; Barwe, S. P.; Sampson, V. B.; Rajasekaran, A. K.; Pendyala, L. Expression of Na,K-ATPasebeta(1) subunit increases uptake and sensitizes carcinoma cells to oxaliplatin. Cancer Chemother. Pharmacol. 2009, 64(6), 1187–1194. 108. Chan, S. H.; Leu, W. J.; Hsu, L. C.; Chang, H. S.; Hwang, T. L.; Chen, I. S.; Chen, C. S.; Guh, J. H. Reevesioside F induces potent and efficient anti-proliferative and apoptotic activities through Na+ /K+-ATPase α3 subunit-involved mitochondrial stress and amplification of caspase cascades. Biochem. Pharmacol. 2013, 86(11),1564–1575. 109. Yang, P.; Cartwright, C.; Efuet, E.; Hamilton, S. R.; Wistuba, I. I.; Menter, D.; Addington, C.; Shureiqi, I.; Newman, R. A. Cellular location and expression of Na+ , K+‐ATPase α subunits affect the anti‐proliferative activity of oleandrin. Mol. Carcinog. 2014, 53(4), 253–263. 110. Katz, A.; Lifshitz, Y.; Bab-Dinitz, E.; Kapri-Pardes, E.; Goldshleger, R.; Tal, D. M.; Karlish, S. J. Selectivity of digitalis glycosides for isoforms of human Na, K-ATPase. J. Biol. Chem. 2010, 285(25), 19582–19592. 111. Liu, J.; Kesiry, R.; Periyasamy, S. M.; Malhotra, D.; Xie, Z.; Shapiro, J. I. Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int. 2004, 66(1), 227–241. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66899 | - |
dc.description.abstract | Ascleposide 由梧桐科的台灣梭羅木(Reevesia formosana)根部萃取而來,為一種含有五元內酯環的強心類固醇(cardenolide)。以 sulforhodamine B(SRB)assay檢測細胞生長,結果顯示ascleposide 顯著地抑制荷爾蒙不反應型前列腺癌細胞株PC-3(GI50 = 27.23 ± 1.05 nM)與 DU-145(GI50 = 65.92 ± 2.41 nM),且與濃度呈正向關係。相比之下 ascleposide 無法對大鼠心肌細胞株 H9c2 產生作用,表示ascleposide 對癌細胞具有選擇性。以carboxyfluorescein succinimidyl ester(CFSE)
staining 與流式細胞儀分析細胞分裂情形,證實 ascleposide 可以對細胞週期與細胞生長造成干擾。實驗結果觀察到經 ascleposide 作用後會增加 cleaved caspase-9、cleaved caspase-3 與 cleaved PARP-1 等與細胞凋亡相關的訊號,另外也觀察到抗細 胞凋亡蛋白 Bcl-2 和 Mcl-1L 表現量減少與促細胞凋亡蛋白 Bak 增加,顯示ascleposide 在 PC-3 細胞主要是透過活化內生性途徑引起細胞凋亡。Ascleposide 在PC-3 細胞引起的細胞週期延遲與細胞週期調控的相關蛋白 cyclin D1、cyclin A、CDK4、c-Myc 以及 phosphorylated Rb 的抑制有關。此外 ascleposide 可以抑制 Akt 在 Ser473 的磷酸化與 4E-BP1 在 Thr37/46 和 Thr70 的磷酸化。另外值得注意的是ascleposide 可以透過引起 p38 的磷酸化作用來活化 MAP kinase 訊息傳遞路徑。利用轉殖技術過量表現 myristylated-Akt 和 c-Myc 來探討這些訊息傳遞路徑間是否具 有關聯性,然而結果發現 Akt 和 c-Myc 的過量表現無法對細胞週期調控蛋白與細胞生長造成影響。已知強心苷會增加胞內鈉、鈣與氧化壓力(oxidative stress)。然而我們的實驗結果在 PC-3 細胞中並無觀察到 ROS 含量的改變。鈉含量則在 PC-3和 DU-145 細胞中加藥 24 小時後有顯著的上升。Ascleposide 也可以增加 PC-3 細 胞中的鈣離子,但在 DU-145 細胞中此現象並不明顯,只有 100 nM ascleposide 可以增加 DU-145 中的鈣離子。藉由添加高濃度的胞外 KCl 增加 Na+/K+-ATPase 的活性後可以逆轉 ascleposide 造成的細胞週期調控蛋白表現量下降。另外高濃度鉀離子也可以回復上升的胞內鈉離子,證實 Na+/K+-ATPase 在 ascleposide 對細胞所造成 的影響中具有關鍵的角色。我們觀察到 ascleposide 會造成 PC-3 細胞中的Na+/K+-ATPase α1 subunit 減少,免疫螢光染色影像顯示在藥物作用下會造成Na+/K+-ATPase α1 isoform 的胞吞現象。相對之下,α3 和 β1 的表現量則不受影響。總結來說,ascleposide 透過選擇性地抑制 Na+/K+-ATPase α1 而導致細胞週期調控蛋 白表現量下降,因此最終造成荷爾蒙不反應型前列腺癌細胞株的細胞週期停滯與凋亡。雖然 ascleposide 的作用機轉仍需要更多研究,但其抗癌作用使它具有後續的開發潛力。 | zh_TW |
dc.description.abstract | Ascleposide, isolated from the root of Reevesia formosana (Sterculiaceae), is a cardenolide containing a five-membered lactone ring. The data demonstrated that
ascleposide induced a significant concentration-dependent inhibitory effect on the growth of hormone refractory metastatic prostate cancer (HRMPC) cells PC-3 (GI50 = 27.23 ± 1.05 nM) and DU-145 (GI50 = 65.92 ± 2.41 nM) using sulforhodamine B (SRB) assay. In contrast, rat cardiomyocyte cell line H9c2 was not affected by the compound, indicating the selectivity toward cancer cells of ascleposide. Flow cytometric analysis of cell division by carboxyfluorescein succinimidyl ester (CFSE) staining suggested that ascleposide could result in the perturbation of cell cycle progression and of cell proliferation. The increase of apoptosis-related cellular signals, including cleaved caspase-9, -3 and PARP-1, was observed under ascleposide action. In addition, anti-apoptotic proteins Bcl-2 and Mcl-1L were down-regulated while pro-apoptotic family member Bak was up-regulated in the presence of ascleposide, indicating that ascleposide-induced apoptosis was predominantly through the activation of intrinsic apoptotic pathway. Ascleposide provoked a profound cell cycle delay in PC-3 cells associated with a decrease of protein expression of cyclin D1, cyclin A, CDK4, c-Myc and phosphorylated Rb. Furthermore, ascleposide inhibited Akt/PKB phosphorylation at Ser473 and 4E-BP1 phosphorylation at Thr37/46 and Thr70. Moreover, ascleposide could also activate p38 MAP kinase. However, overexpression of myristylated-Akt and c-Myc did not rescue ascleposide-induced effects. Given that cardiac glycosides are capable of inducing the elevation of cytosolic Na+ , Ca2+ and oxidative stress, these cellular signals have been checked thereafter. The results showed that albeit the levels of ROS were not modified, ascleposide induced increased levels of intracellular Na+ and Ca2+ in PC-3 cells whereas an increase of intracellular Na+ was observed but not Ca2+ in DU-145 cells unless high concentration of 100 nM ascleposide was exposed. An introduction of high extracellular KCl levels to drive Na+/K+-ATPase activity significantly rescued ascleposide-mediated effects on down-regulation of cell cycle regulators as well as an elevated intracellular Na+ , confirming the key role of Na+/K+-ATPase to ascleposide action. The expressions of Na+/K+-ATPase subunits were detected in PC-3 cells. Immunofluorescence imaging showed that ascleposide induced an endocytosis of Na+ /K+-ATPase α1 isoform other than α3 and β1 subunits. In conclusion, the data suggests that ascleposide selectively targets α1 subunit to inhibit Na+/K+-ATPase activity, leading to overloads of intracellular Na+ and Ca2+ and perturbation of cell cycle regulators and induction of cell cycle arrest that ultimately induces apoptosis in HRMPCs. Although considerable challenges remain, the study in ascleposide may enable important strategy for anti-HRMPC development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:28Z (GMT). No. of bitstreams: 1 ntu-106-R04423013-1.pdf: 3863692 bytes, checksum: 729fca2a0b075b5ba4ce9fd3950df49d (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 ...........................................................................................................i
List of Abbreviations.....................................................................................................ii 中文摘要..................................................................................................................... iv Abstract... .................................................................................................................... vi Contents............…..........................................................................................................viii List of Figures............................................................................................................... x List of Tables ............................................................................................................... xi Aim of the study ........................................................................................................... 1 Chapter 1: Introduction ................................................................................................. 2 1.1. Prostate cancer ................................................................................................... 2 1.2. Prostate cancer cell lines..................................................................................... 7 1.3. Cardiac glycosides.............................................................................................. 8 1.4. Ascleposide ........................................................................................................ 9 1.5. Na+ /K+ -ATPase ................................................................................................ 10 1.6. Programmed cell death and apoptosis............................................................... 12 1.7. Cell cycle ......................................................................................................... 15 1.8. PI3K/Akt/mTOR pathway ................................................................................ 17 1.9. c-Myc............................................................................................................... 18 1.10. MAPK pathway.............................................................................................. 19 Chapter 2: Materials and Methods............................................................................... 20 2.1. Materials .......................................................................................................... 20 2.2. Methods........................................................................................................... 22 Chapter 3: Results....................................................................................................... 31 3.1. Effects of ascleposide on cell growth in PC-3 and DU145 cells ........................ 31 3.2. Effects of ascleposide on cell cycle progression in PC-3 and DU145 cells........ 31 3.3. Effects of ascleposide on apoptosis-related cellular signals............................... 32 3.4. Effects of ascleposide on Bcl-2 family of proteins and MMP............................ 32 3.5. Effects of ascleposide on expression of cell cycle-related proteins.................... 33 3.6. Effects of ascleposide on PI3K/Akt/mTOR pathway......................................... 34 3.7. Effects of ascleposide on MAPK pathway ........................................................ 35 3.8. Effects of ascleposide on the levels of intracellular Na+ .................................... 35 3.9. Effects of ascleposide on the levels of intracellular Ca2+ ................................... 35 3.10. Effects of ascleposide on ROS production ...................................................... 36 3.11. Effects of ascleposide on tubulin acetylation................................................... 36 3.12. Effects of ascleposide on Na+ /K+ -ATPase expression...................................... 36 3.13. Effects of ascleposide on H9c2 rat cardiomyocytes......................................... 37 Chapter 4: Discussion ................................................................................................. 38 4.1. Ascleposide induces anti-proliferative effect in HRMPC cells .......................... 38 4.2. Ascleposide induces intrinsic apoptotic pathway............................................... 39 4.3. Ascleposide disturbs cell cycle progression....................................................... 41 4.4. Ascleposide inhibits PI3K/Akt pathway and activates MAPK pathway............. 42 4.5. Ascleposide affects the acetylation of α-tubulin ................................................ 44 4.6. Ascleposide modulates downstream signaling cascades through the regulation of Na+ /K+ -ATPase α1 subunit........................................................................ 44 Chapter 5: Conclusion................................................................................................. 47 Appendices ..................................................................................................................... 48 References....................................................................................................................... 82 | |
dc.language.iso | en | |
dc.title | Ascleposide對人類荷爾蒙不依賴型轉移性前列腺癌之抗癌機轉探討 | zh_TW |
dc.title | Studies on Anticancer Mechanisms of Ascleposide against
Human Hormone-Refractory Metastatic Prostate Cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭哲志,許麗卿,楊家榮,黃聰龍 | |
dc.subject.keyword | Ascleposide,前列腺癌,Na+ /K+ -ATPase,細胞週期停滯,細胞凋亡, | zh_TW |
dc.subject.keyword | Ascleposide,prostate cancer,Na+ /K+ -ATPase,cell cycle arrest,apoptosis, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU201703192 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 3.77 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.