請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
| dc.contributor.author | Chi-Fan Chen | en |
| dc.contributor.author | 陳際帆 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:14:27Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | References
1. Egger, B., Regeneration: rewarding, but potentially risky. Birth Defects Res C Embryo Today, 2008. 84(4): p. 257-64. 2. Bely, A.E. and K.G. Nyberg, Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol, 2010. 25(3): p. 161-70. 3. Poss, K.D., Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet, 2010. 11(10): p. 710-22. 4. Tanaka, E.M. and P.W. Reddien, The cellular basis for animal regeneration. Dev Cell, 2011. 21(1): p. 172-85. 5. Jopling, C., S. Boue, and J.C. Izpisua Belmonte, Dedifferentiation, transdifferentiation and reprogramming three routes to regeneration. Nat Rev Mol Cell Biol, 2011. 12(2): p. 79-89. 6. Li, Q., H. Yang, and T.P. Zhong, Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics, 2015. 42(2): p. 57-70. 7. Seifert, A.W., et al., The influence of fundamental traits on mechanisms controlling appendage regeneration. Biol Rev Camb Philos Soc, 2012. 87(2): p. 330-45. 8. Baddour, J.A., K. Sousounis, and P.A. Tsonis, Organ repair and regeneration: an overview. Birth Defects Res C Embryo Today, 2012. 96(1): p. 1-29. 9. Reginelli, A.D., et al., Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development, 1995. 121(4): p. 1065-76. 10. Lopez-Otin, C., et al., The hallmarks of aging. Cell, 2013. 153(6): p. 1194-217. 11. Gladyshev, V.N., On the cause of aging and control of lifespan: heterogeneity leads to inevitable damage accumulation, causing aging; control of damage composition and rate of accumulation define lifespan. Bioessays, 2012. 34(11): p. 925-9. 12. Kirkwood, T.B., Understanding the odd science of aging. Cell, 2005. 120(4): p. 437-47. 13. Vera, E., et al., Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One, 2013. 8(1): p. e53760. 14. Chen, H., et al., SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci, 2014. 6: p. 103. 15. Giardini, M.A., et al., Telomere and telomerase biology. Prog Mol Biol Transl Sci, 2014. 125: p. 1-40. 16. Gilson, E. and E. Segal-Bendirdjian, The telomere story or the triumph of an open-minded research. Biochimie, 2010. 92(4): p. 321-6. 17. Zakian, V.A., The ends have arrived. Cell, 2009. 139(6): p. 1038-40. 18. Macieira-Coelho, A., Cell division and aging of the organism. Biogerontology, 2011. 12(6): p. 503-15. 19. Nicholls, C., et al., Molecular regulation of telomerase activity in aging. Protein Cell, 2011. 2(9): p. 726-38. 20. Sandin, S. and D. Rhodes, Telomerase structure. Curr Opin Struct Biol, 2014. 25: p. 104-10. 21. Bonetti, D., et al., Telomere-end processing: mechanisms and regulation. Chromosoma, 2013. 123(1-2): p. 57-66. 22. Petralia, R.S., M.P. Mattson, and P.J. Yao, Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev, 2014. 16: p. 66-82. 23. Calado, R.T. and B. Dumitriu, Telomere dynamics in mice and humans. Semin Hematol, 2013. 50(2): p. 165-74. 24. Djojosubroto, M.W., et al., Telomeres and telomerase in aging, regeneration and cancer. Mol Cells, 2003. 15(2): p. 164-75. 25. Blasco, M.A., Telomere length, stem cells and aging. Nat Chem Biol, 2007. 3(10): p. 640-9. 26. Yun, M.H., Changes in Regenerative Capacity through Lifespan. Int J Mol Sci, 2015. 16(10): p. 25392-432. 27. Seifert, A.W. and S.R. Voss, Revisiting the relationship between regenerative ability and aging. BMC Biol, 2013. 11: p. 2. 28. Jeffery, W.R., Siphon regeneration capacity is compromised during aging in the ascidian Ciona intestinalis. Mech Ageing Dev, 2012. 133(9-10): p. 629-36. 29. Anchelin, M., et al., Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One, 2011. 6(2): p. e16955. 30. Wendler, S., et al., Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell, 2015. 14(5): p. 857-66. 31. Sousounis, K., J.A. Baddour, and P.A. Tsonis, Aging and regeneration in vertebrates. Curr Top Dev Biol, 2014. 108: p. 217-46. 32. Armanios, M., et al., Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet, 2009. 85(6): p. 823-32. 33. Westhoff, J.H., et al., Telomere shortening reduces regenerative capacity after acute kidney injury. J Am Soc Nephrol, 2010. 21(2): p. 327-36. 34. Watabe-Rudolph, M., et al., Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions. PLoS One, 2011. 6(11): p. e27801. 35. von Figura, G., et al., Regeneration of the exocrine pancreas is delayed in telomere-dysfunctional mice. PLoS One, 2011. 6(2): p. e17122. 36. Jaskelioff, M., et al., Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 2011. 469(7328): p. 102-6. 37. Tan, T.C., et al., Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4209-14. 38. Sugio, M., et al., Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Dev Growth Differ, 2012. 54(4): p. 439-50. 39. Laird, D.J. and I.L. Weissman, Telomerase maintained in self-renewing tissues during serial regeneration of the urochordate Botryllus schlosseri. Dev Biol, 2004. 273(2): p. 185-94. 40. Elmore, L.W., et al., Upregulation of telomerase function during tissue regeneration. Exp Biol Med (Maywood), 2008. 233(8): p. 958-67. 41. Bednarek, D., et al., Telomerase Is Essential for Zebrafish Heart Regeneration. Cell Rep, 2015. 12(10): p. 1691-703. 42. Alibardi, L., Immunodetection of telomerase-like immunoreactivity in normal and regenerating tail of amphibians suggests it is related to their regenerative capacity. J Exp Zool A Ecol Genet Physiol, 2015. 43. Alibardi, L., Immunocalization of telomerase in cells of lizard tail after amputation suggests cell activation for tail regeneration. Tissue Cell, 2016. 48(1): p. 63-71. 44. Murthy, M. and J.L. Ram, Invertebrates as model organisms for research on aging biology. Invertebr Reprod Dev, 2015. 59(sup1): p. 1-4. 45. Falconi, R., A. Gugnali, and F. Zaccanti, Quantitative observations on asexual reproduction ofAeolosoma viride(Annelida, Aphanoneura). Invertebrate Biology, 2015. 134(2): p. 151-161. 46. Traut, W., et al., The telomere repeat motif of basal Metazoa. Chromosome Res, 2007. 15(3): p. 371-82. 47. Gomes, N.M., J.W. Shay, and W.E. Wright, Telomere biology in Metazoa. FEBS Lett, 2010. 584(17): p. 3741-51. 48. Gomes, N.M.V., J.W. Shay, and W.E. Wright, Telomeres and Telomerase. 2010: p. 227-258. 49. Jha, A.N., et al., Localization of a vertebrate telomeric sequence in the chromosomes of two marine worms (phylum Annelida: class polychaeta). Chromosome Res, 1995. 3(8): p. 507-8. 50. Vitturi, R., et al., Physical mapping of rDNA genes, (TTAGGG)n telomeric sequence and other karyological features in two earthworms of the family Lumbricidae (Annelida: Oligochaeta). Heredity, 2000. 85: p. 203-7. 51. Vitturi, R., et al., Chromosome analysis and FISH mapping of ribosomal DNA (rDNA), telomeric (TTAGGG)n and (GATA)n repeats in the leech Haemopis sanguisuga (L.) (Annelida: Hirudinea). Genetica, 2002. 115(2): p. 189-94. 52. Hernroth, B., et al., Possibility of mixed progenitor cells in sea star arm regeneration. J Exp Zool B Mol Dev Evol, 2010. 314(6): p. 457-68. 53. Francis, N., et al., Lack of age-associated telomere shortening in long- and short-lived species of sea urchins. FEBS Lett, 2006. 580(19): p. 4713-7. 54. Lau, B.W., et al., Molecular cloning and characterization of the zebrafish (Danio rerio) telomerase catalytic subunit (telomerase reverse transcriptase, TERT). J Mol Neurosci, 2008. 34(1): p. 63-75. 55. Bodnar, A.G. and J.A. Coffman, Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins. Aging Cell, 2016. 15(4): p. 778-87. 56. Giraud-Panis, M.J., et al., CST meets shelterin to keep telomeres in check. Mol Cell, 2010. 39(5): p. 665-76. 57. Schumpert, C., et al., Telomerase activity and telomere length in Daphnia. PLoS One, 2015. 10(5): p. e0127196. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66898 | - |
| dc.description.abstract | 端粒(Telomere)是一段存在於真核生物染色體末端的功能性結構,它能避免染色體降解與不正常融合的發生。隨著細胞分裂的進行,無法完全複製的端粒DNA將逐漸縮短。研究已經指出,許多老化相關的疾病與過短的端粒有著密不可分的關係。因此,端粒耗損(Telomere attrition)已被認為是造成生物衰老的一個影響因子。端粒酶具有延長端粒的功能,並且在特定組織中避免端粒縮短的情形發生。眾多研究發現,在組織的更新及再生過程中端粒必須維持一定的長度以確保細胞分裂得以進行。因此,端粒酶的功能可能在其中扮演關鍵角色。一般認為生物的再生能力會隨著老化的過程而下降,然而對於老化如何透過端粒與端粒酶的調控來影響再生進行,目前尚未徹底了解。瓢體蟲(Aeolosoma viride)是一種小型淡水生環節動物,其具有優異的再生能力與相對較短的壽命,因此適合作為研究該問題的實驗材料。在本研究中,瓢體蟲的端粒DNA序列TTAGGG已被清楚辨識,有助於後續測量端粒的長度變化,其端粒酶基因(Avi-tert)亦被成功選殖以作為基因表現的指標。研究結果顯示,端粒酶的酵素活性可在蟲體的頭部、軀幹及尾部被偵測到,因此端粒酶基因可能常態表現於瓢體蟲體內。此外,在前端再生的過程中,再生區域內的端粒酶基因表現與活性有顯著地上升,同時端粒長度亦維持不變,這表示端粒酶確實參與再生的過程。最後,追蹤端粒酶活性及端粒長度在老化過程中的變化,結果顯示兩者在老化的過程中並無減少或變短的情形。這些結果說明,端粒酶參與瓢體蟲的再生過程使端粒維持恆定,此外瓢體蟲的衰老、死亡並不是端粒耗損所造成的結果。 | zh_TW |
| dc.description.abstract | Telomeres are the functional chromosome elements which protect the ends of eukaryotic linear chromosomes from degradation and fusion. Incomplete telomere DNA replication results in length shortening following each cell division. It has been reported that shortened telomeres are involved in several age-related diseases. For that reason, telomere attrition is considered as one of the aging factors. Telomerase extends telomere ends to prevent telomere shortening in certain tissues. More and more studies suggest that telomere maintenance is necessary in tissue renewal and regeneration. Therefore, telomerase activation may play a pivotal role during these processes. In general, regeneration ability is compromised in aged individuals. However, it is unclear how aging affects regeneration process and whether it is through the regulation of telomere maintenance and telomerase activation in an organism. Aeolosoma viride is a fresh water annelid with strong regeneration ability. Because of its short lifespan, A. viride would be a suitable species to address this question. In the present study, the telomeric sequence, TTAGGG, in A. viride has been identified, and the telomerase reverse transcriptase gene, Avi-tert, has been cloned. Avi-tert may be constitutively expressed because telomerase activity could be detected in head, trunk, and tail regions of intact animal. Besides, during anterior regeneration, both Avi-tert expression and telomerase activity were significantly upregulated at the regenerating site where telomere length was maintained. These results suggest that although telomerase is constitutively expressed, a boost of gene expression and enzyme activity are required during the regeneration process in A. viride. Furthermore, it was found that telomere length and telomerase activity were both maintained during A. viride lifespan, which supports the unexpected scenario that telomere attrition may not be an aging factor in A. viride. All in all, aging is a multifaceted process, and more investigations are required to clarify its influence on regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:27Z (GMT). No. of bitstreams: 1 ntu-106-R03b21026-1.pdf: 4129443 bytes, checksum: d00cd49875ed1a44d8c08ce6233ba475 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Introduction 1 The general idea of regeneration 1 The general idea of aging 2 Telomere and telomerase 2 The relationship between aging, regeneration, and telomeres 5 Aeolosoma viride 6 Materials and methods 8 Animals and samples preparation 8 Regeneration experiment 9 Total RNA extraction 10 Reverse transcription (RT) 11 Gene cloning and sequence analysis 11 RNA probes synthesis 14 Whole-mount in situ hybridization (WISH) 15 Quantitative PCR (qPCR) analysis 16 Genomic DNA extraction 17 Labeling of telomeric DNA probe for Southern hybridization 18 Dot blotting and Southern hybridization 18 Bal-31 exonuclease digestion 19 Terminal restriction fragment (TRF) assay 20 Telomere fluorescence in situ hybridization (Telomere FISH) 21 Telomeric repeat amplification protocol (TRAP) assay 22 Statistical analysis 24 Results 25 The effects of aging on anterior regeneration in A. viride 25 Identification of telomeric DNA sequence in A. viride 25 Molecular cloning and sequence identification of A. viride telomerase reverse transcriptase gene (Avi-tert) 27 Detection of telomerase activity by TRAP assay in A. viride 29 Telomere maintenance during anterior regeneration in A. viride 29 Expression of Avi-tert during anterior regeneration in A. viride 30 Telomerase activity during anterior regeneration in A. viride 31 Maintenance of telomere length and telomerase activity during aging in A. viride 32 Discussion 33 Conservation of telomeric sequence and telomerase gene 33 Constitutive expression of telomerase in intact A. viride 34 The roles of telomere and telomerase during anterior regeneration in A. viride 35 The roles of telomere and telomerase during aging in A. viride 36 References 38 Figures 45 Figure 1. Animal manipulation in anterior regeneration. 45 Figure 2. Survival of A. viride in the culture conditions of our lab. 46 Figure 3. The effects of aging on anterior regeneration in A. viride. 48 Figure 4. Identification of telomeric DNA sequence in A. viride. 50 Figure 5. Sequence identification and phylogenetic analysis of Avi-tert. 55 Figure 6. Detection of telomerase activity by TRAP assay in A. viride. 57 Figure 7. Telomere length in intact or anterior regenerating A. viride. 58 Figure 8. Expression of Avi-tert in intact or anterior regenerating A. viride. 61 Figure 9. Telomerase activity in intact or anterior regenerating A. viride. 63 Figure 10. Maintenance of telomere length and telomerase activity during aging in A. viride. 65 | |
| dc.language.iso | en | |
| dc.subject | 瓢體蟲 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 再生 | zh_TW |
| dc.subject | 端粒? | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | Regeneration | en |
| dc.subject | Aging | en |
| dc.subject | Aeolosoma viride | en |
| dc.subject | Telomere | en |
| dc.subject | Telomerase | en |
| dc.title | 端粒在瓢體蟲前端再生及老化過程中的恆定 | zh_TW |
| dc.title | Telomere Maintenance during Anterior Regeneration and Aging in Aeolosoma viride | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳律佑(Liuh-Yow Chen),郭典翰(Dian-Han Kuo) | |
| dc.subject.keyword | 瓢體蟲,老化,再生,端粒?,端粒, | zh_TW |
| dc.subject.keyword | Aeolosoma viride,Aging,Regeneration,Telomerase,Telomere, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201703210 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
