Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66894
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟
dc.contributor.authorShang-Wei Lien
dc.contributor.author黎上瑋zh_TW
dc.date.accessioned2021-06-17T01:14:24Z-
dc.date.available2023-06-22
dc.date.copyright2018-06-22
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citationAballay, A., Ausubel, F.M., 2002. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol 5, 97-101.
Ahamed, M., Akhtar, M.J., Raja, M., Ahmad, I., Siddiqui, M.K., AlSalhi, M.S., Alrokayan, S.A., 2011. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine 7, 904-913.
Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M., 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med-Oxford 56, 300-306.
Alegado, R.A., Campbell, M.C., Chen, W.C., Slutz, S.S., Tan, M.W., 2003. Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cell Microbiol 5, 435-444.
Alper, S., McBride, S.J., Lackford, B., Freedman, J.H., Schwartz, D.A., 2007. Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol Cell Biol 27, 5544-5553.
An, J.H., Blackwell, T.K., 2003. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17, 1882-1893.
Andersson-Willman, B., Gehrmann, U., Cansu, Z., Buerki-Thurnherr, T., Krug, H.F., Gabrielsson, S., Scheynius, A., 2012. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicol Appl Pharmacol 264, 94-103.
Armstead, A.L., Li, B., 2016. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 11, 6421-6433.
Basnet, M., Ghoshal, S., Tufenkji, N., 2013. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environ Sci Technol 47, 13355-13364.
Bols, N.C., Brubacher, J.L., Ganassin, R.C., Lee, L.E., 2001. Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25, 853-873.
Brenner, S., 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Chakraborti, S., Chatterjee, T., Joshi, P., Poddar, A., Bhattacharyya, B., Singh, S.P., Gupta, V., Chakrabarti, P., 2010. Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir 26, 3506-3513.
Chang, H., Ho, C.C., Yang, C.S., Chang, W.H., Tsai, M.H., Tsai, H.T., Lin, P., 2013. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. Exp Toxicol Pathol 65, 887-896.
Chavez, V., Mohri-Shiomi, A., Maadani, A., Vega, L.A., Garsin, D.A., 2007. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176, 1567-1577.
Cheesman, H.K., Feinbaum, R.L., Thekkiniath, J., Dowen, R.H., Conery, A.L., Pukkila-Worley, R., 2016. Aberrant activation of p38 MAP kinase-dependent innate immune responses is toxic to Caenorhabditis elegans. G3 (Bethesda) 6, 541-549.
Chen, J.K., Ho, C.C., Chang, H., Lin, J.F., Yang, C.S., Tsai, M.H., Tsai, H.T., Lin, P., 2015. Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice. Nanotoxicology 9, 43-53.
Chen, R., Huo, L., Shi, X., Bai, R., Zhang, Z., Zhao, Y., Chang, Y., Chen, C., 2014. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8, 2562-2574.
Cho, W.S., Duffin, R., Bradley, M., Megson, I.L., MacNee, W., Lee, J.K., Jeong, J., Donaldson, K., 2013a. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10:55.
Cho, W.S., Duffin, R., Howie, S.E., Scotton, C.J., Wallace, W.A., Macnee, W., Bradley, M., Megson, I.L., Donaldson, K., 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27.
Cho, W.S., Duffin, R., Thielbeer, F., Bradley, M., Megson, I.L., Macnee, W., Poland, C.A., Tran, C.L., Donaldson, K., 2012. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126, 469-477.
Cho, W.S., Kang, B.C., Lee, J.K., Jeong, J., Che, J.H., Seok, S.H., 2013b. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9.
Choi, J., Kim, H., Kim, P., Jo, E., Kim, H.M., Lee, M.Y., Jin, S.M., Park, K., 2015. Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health A 78, 226-243.
Choi, S.J., Choy, J.H., 2014. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomedicine 9 (Suppl 2), 261-269.
Comber, S.D., Rule, K.L., Conrad, A.U., Hoss, S., Webb, S.F., Marshall, S., 2008. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates. Environ Pollut 153, 184-191.
Corbo, C., Molinaro, R., Parodi, A., Toledano Furman, N.E., Salvatore, F., Tasciotti, E., 2016. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond) 11, 81-100.
Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Guichou, J.F., Kohara, Y., Ewbank, J.J., 2004. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5, 488-494.
Deng, Z.J., Mortimer, G., Schiller, T., Musumeci, A., Martin, D., Minchin, R.F., 2009. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101.
Donaldson, K., Schinwald, A., Murphy, F., Cho, W.S., Duffin, R., Tran, L., Poland, C., 2013. The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46, 723-732.
Duffin, R., Tran, L., Brown, D., Stone, V., Donaldson, K., 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19, 849-856.
Evans, E.A., Kawli, T., Tan, M.W., 2008. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4:e1000175.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Fukui, H., Horie, M., Endoh, S., Kato, H., Fujita, K., Nishio, K., Komaba, L.K., Maru, J., Miyauhi, A., Nakamura, A., Kinugasa, S., Yoshida, Y., Hagihara, Y., Iwahashi, H., 2012. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact 198, 29-37.
Garsin, D.A., Sifri, C.D., Mylonakis, E., Qin, X., Singh, K.V., Murray, B.E., Calderwood, S.B., Ausubel, F.M., 2001. A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98, 10892-10897.
George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., Rosenauer, A., Damoiseaux, R., Bradley, K.A., Madler, L., Nel, A.E., 2010. Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4, 15-29.
Gojova, A., Guo, B., Kota, R.S., Rutledge, J.C., Kennedy, I.M., Barakat, A.I., 2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115, 403-409.
Gottschalk, F., Sun, T., Nowac, B., 2013. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181, 287-300.
Gravato-Nobre, M.J., Hodgkin, J., 2005. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7, 741-751.
Guan, R., Kang, T., Lu, F., Zhang, Z., Shen, H., Liu, M., 2012. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7, 602-609.
Gulson, B., McCall, M., Korsch, M., Gomez, L., Casey, P., Oytam, Y., Taylor, A., McCulloch, M., Trotter, J., Kinsley, L., Greenoak, G., 2010. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118, 140-149.
Hackenberg, S., Scherzed, A., Technau, A., Kessler, M., Froelich, K., Ginzkey, C., Koehler, C., Burghartz, M., Hagen, R., Kleinsasser, N., 2011. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 25, 657-663.
Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., Wingett, D.G., 2009. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4, 1409-1420.
Hoebe, K., Janssen, E., Beutler, B., 2004. The interface between innate and adaptive immunity. Nat Immunol 5, 971-974.
Hoeven, R., McCallum, K.C., Cruz, M.R., Garsin, D.A., 2011. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7:e1002453.
Hong, H., Shi, J., Yang, Y., Zhang, Y., Engle, J.W., Nickles, R.J., Wang, X., Cai, W., 2011. Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11, 3744-3750.
Huang, C.C., Aronstam, R.S., Chen, D.R., Huang, Y.W., 2010. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24, 45-55.
Huang, C.W., Li, S.W., Liao, V.H.C., 2017. Chronic ZnO-NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans. Environ Pollut 220, 1456-1464.
Hunt, P.R., Marquis, B.J., Tyner, K.M., Conklin, S., Olejnik, N., Nelson, B.C., Sprando, R.L., 2013. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol 33, 1131-1142.
Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K., Matsumoto, K., 2005. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19, 2278-2283.
Irazoqui, J.E., Urbach, J.M., Ausubel, F.M., 2010. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10, 47-58.
James, S.A., Feltis, B.N., de Jonge, M.D., Sridhar, M., Kimpton, J.A., Altissimo, M., Mayo, S., Zheng, C., Hastings, A., Howard, D.L., Paterson, D.J., Wright, P.F., Moorhead, G.F., Turney, T.W., Fu, J., 2013. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS Nano 7, 10621-10635.
Jiang, C., Hsu-Kim, H., 2014. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. Environ Sci Process Impacts 16, 2536-2544.
Johnson, B.M., Fraietta, J.A., Gracias, D.T., Hope, J.L., Stairiker, C.J., Patel, P.R., Mueller, Y.M., McHugh, M.D., Jablonowski, L.J., Wheatley, M.A., Katsikis, P.D., 2015. Acute exposure to ZnO nanoparticles induces autophagic immune cell death. Nanotoxicology 9, 737-748.
Juang, Y.M., Lai, B.H., Chien, H.J., Ho, M., Cheng, T.J., Lai, C.C., 2014. Changes in protein expression in rat bronchoalveolar lavage fluid after exposure to zinc oxide nanoparticles: an iTRAQ proteomic approach. Rapid Commun Mass Spectrom 28, 974-980.
Kao, Y.Y., Chen, Y.C., Cheng, T.J., Chiung, Y.M., Liu, P.S., 2012a. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125, 462-472.
Kao, Y.Y., Cheng, T.J., Yang, D.M., Wang, C.T., Chiung, Y.M., Liu, P.S., 2012b. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 48, 464-471.
Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z., 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44, 1962-1967.
Kenyon, C., Chang, J., Gensch, E., Rudner, A., Tabtiang, R., 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464.
Kim, A.R., Ahmed, F.R., Jung, G.Y., Cho, S.W., Kim, D.I., Um, S.H., 2013. Hepatocyte cytotoxicity evaluation with zinc oxide nanoparticles. J Biomed Nanotechnol 9, 926-929.
Kim, D.H., Ewbank, J.J., 2015. Signaling in the innate immune response. WormBook, 1-51.
Kim, D.H., Feinbaum, R., Alloing, G., Emerson, F.E., Garsin, D.A., Inoue, H., Tanaka-Hino, M., Hisamoto, N., Matsumoto, K., Tan, M.W., Ausubel, F.M., 2002. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623-626.
Kocbek, P., Teskac, K., Kreft, M.E., Kristl, J., 2010. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6, 1908-1917.
Kondo, M., Yanase, S., Ishii, T., Hartman, P.S., Matsumoto, K., Ishii, N., 2005. The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech Ageing Dev 126, 642-647.
Konduru, N.V., Murdaugh, K.M., Sotiriou, G.A., Donaghey, T.C., Demokritou, P., Brain, J.D., Molina, R.M., 2014. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol 11:44.
Kurz, C.L., Chauvet, S., Andres, E., Aurouze, M., Vallet, I., Michel, G.P., Uh, M., Celli, J., Filloux, A., De Bentzmann, S., Steinmetz, I., Hoffmann, J.A., Finlay, B.B., Gorvel, J.P., Ferrandon, D., Ewbank, J.J., 2003. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22, 1451-1460.
Lai, C.H., Chou, C.Y., Ch'ang, L.Y., Liu, C.S., Lin, W., 2000. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10, 703-713.
Landa, P., Prerostova, S., Petrova, S., Knirsch, V., Vankova, R., Vanek, T., 2015. The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc. Environ Sci Technol 49, 14537-14545.
Landsiedel, R., Ma-Hock, L., Hofmann, T., Wiemann, M., Strauss, V., Treumann, S., Wohlleben, W., Groters, S., Wiench, K., van Ravenzwaay, B., 2014. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16.
Lee, C.M., Jeong, H.J., Yun, K.N., Kim, D.W., Sohn, M.H., Lee, J.K., Jeong, J., Lim, S.T., 2012. Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int J Nanomedicine 7, 3203-3209.
Li, C.H., Shen, C.C., Cheng, Y.W., Huang, S.H., Wu, C.C., Kao, C.C., Liao, J.W., Kang, J.J., 2012. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6, 746-756.
Lin, C.D., Kou, Y.Y., Liao, C.Y., Li, C.H., Huang, S.P., Cheng, Y.W., Liao, W.C., Chen, H.X., Wu, P.L., Kang, J.J., Lee, C.C., Lai, C.H., 2014. Zinc oxide nanoparticles impair bacterial clearance by macrophages. Nanomedicine (Lond) 9, 1327-1339.
Liu, J., Feng, X., Wei, L., Chen, L., Song, B., Shao, L., 2016. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 46, 348-384.
Ma, H., Bertsch, P.M., Glenn, T.C., Kabengi, N.J., Williams, P.L., 2009. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28, 1324-1330.
Ma, H., Williams, P.L., Diamond, S.A., 2013. Ecotoxicity of manufactured ZnO nanoparticles--a review. Environ Pollut 172, 76-85.
Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., Ausubel, F.M., 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96, 47-56.
Mallo, G.V., Kurz, C.L., Couillault, C., Pujol, N., Granjeaud, S., Kohara, Y., Ewbank, J.J., 2002. Inducible antibacterial defense system in C. elegans. Curr Biol 12, 1209-1214.
Marino, G., Niso-Santano, M., Baehrecke, E.H., Kroemer, G., 2014. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15, 81-94.
McCallum, K.C., Garsin, D.A., 2016. The role of reactive oxygen species in modulating the Caenorhabditis elegans immune response. PLoS Pathog 12:e1005923.
McCallum, K.C., Liu, B., Fierro-Gonzalez, J.C., Swoboda, P., Arur, S., Miranda-Vizuete, A., Garsin, D.A., 2016. TRX-1 regulates SKN-1 nuclear localization cell non-autonomously in Caenorhabditis elegans. Genetics 203, 387-402.
Meyer, K., Rajanahalli, P., Ahamed, M., Rowe, J.J., Hong, Y., 2011. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol In Vitro 25, 1721-1726.
Monteiro-Riviere, N.A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A.O., Riviere, J.E., 2011. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123, 264-280.
Moos, P.J., Chung, K., Woessner, D., Honeggar, M., Cutler, N.S., Veranth, J.M., 2010. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23, 733-739.
Moos, P.J., Olszewski, K., Honeggar, M., Cassidy, P., Leachman, S., Woessner, D., Cutler, N.S., Veranth, J.M., 2011. Responses of human cells to ZnO nanoparticles: a gene transcription study. Metallomics 3, 1199-1211.
Moy, T.I., Ball, A.R., Anklesaria, Z., Casadei, G., Lewis, K., Ausubel, F.M., 2006. Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci USA 103, 10414-10419.
Mudunkotuwa, I.A., Rupasinghe, T., Wu, C.M., Grassian, V.H., 2012. Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28, 396-403.
Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., Kenyon, C., 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283.
Murthy, S.K., 2007. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2, 129-141.
Nel, A., Xia, T., Madler, L., Li, N., 2006. Toxic potential of materials at the nanolevel. Science 311, 622-627.
Ngobili, T.A., Daniele, M.A., 2016. Nanoparticles and direct immunosuppression. Exp Biol Med (Maywood) 241, 1064-1073.
Nicholas, H.R., Hodgkin, J., 2004. Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Mol Immunol 41, 479-493.
Nowack, B., Bucheli, T.D., 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150, 5-22.
Oláhová, M., Taylor, S.R., Khazaipoul, S., Wang, J., Morgan, B.A., Matsumoto, K., Blackwell, T.K., Veal, E.A., 2008. A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proc Natl Acad Sci USA 105, 19839-19844.
Osmond, M.J., McCall, M.J., 2010. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4, 15-41.
Paek, H.J., Lee, Y.J., Chung, H.E., Yoo, N.H., Lee, J.A., Kim, M.K., Lee, J.K., Jeong, J., Choi, S.J., 2013. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale 5, 11416-11427.
Papp, D., Csermely, P., Soti, C., 2012. A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8:e1002673.
Park, E.J., Jeong, U., Yoon, C., Kim, Y., 2017. Comparison of distribution and toxicity of different types of zinc-based nanoparticles. Environ Toxicol 32, 1363-1374.
Pukkila-Worley, R., Ausubel, F.M., 2012. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 24, 3-9.
Roduner, E., 2006. Size matters: why nanomaterials are different. Chem Soc Rev 35, 583-592.
Roy, R., Das, M., Dwivedi, P.D., 2015. Toxicological mode of action of ZnO nanoparticles: Impact on immune cells. Mol Immunol 63, 184-192.
Roy, R., Parashar, V., Chauhan, L.K., Shanker, R., Das, M., Tripathi, A., Dwivedi, P.D., 2014. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol In Vitro 28, 457-467.
Rushforth, A.M., White, C.C., Anderson, P., 1998. Functions of the Caenorhabditis elegans regulatory myosin light chain genes mlc-1 and mlc-2. Genetics 150, 1067-1077.
Sanvicens, N., Marco, M.P., 2008. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol 26, 425-433.
Saptarshi, S.R., Duschl, A., Lopata, A.L., 2015. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine (Lond) 10, 2075-2092.
Seker, S., Elcin, A.E., Yumak, T., Sinag, A., Elcin, Y.M., 2014. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicol In Vitro 28, 1349-1358.
Shakoor, S., Suna, L., Wang, D.Y., 2016. Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5, 492-499.
Shen, C., James, S.A., de Jonge, M.D., Turney, T.W., Wright, P.F., Feltis, B.N., 2013. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 136, 120-130.
Shi, L.E., Li, Z.H., Zheng, W., Zhao, Y.F., Jin, Y.F., Tang, Z.X., 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31, 173-186.
Shim, K.H., Hulme, J., Maeng, E.H., Kim, M.K., An, S.S., 2014. Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomedicine 9 (Suppl 2), 217-224.
Shivers, R.P., Pagano, D.J., Kooistra, T., Richardson, C.E., Reddy, K.C., Whitney, J.K., Kamanzi, O., Matsumoto, K., Hisamoto, N., Kim, D.H., 2010. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet 6:e1000892.
Shrivastava, R., Raza, S., Yadav, A., Kushwaha, P., Flora, S.J., 2014. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37, 336-347.
Sifri, C.D., Begun, J., Ausubel, F.M., Calderwood, S.B., 2003. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71, 2208-2217.
Son, M.J., Kim, W.K., Kwak, M., Oh, K.J., Chang, W.S., Min, J.K., Lee, S.C., Song, N.W., Bae, K.H., 2015. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation. Nanotechnology 26:435101.
Sulston, J., Hodgkin, J., 1988. Methods. In: Wood WB, editor. The nematode Caenorhabditis elegans. New York: Cold Spring Harbor Laboratory Press, 587-606.
Tan, M.W., Mahajan-Miklos, S., Ausubel, F.M., 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96, 715-720.
Tankhiwale, R., Bajpai, S.K., 2012. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B Biointerfaces 90, 16-20.
Thompson, P.A., Khatami, M., Baglole, C.J., Sun, J., Harris, S.A., Moon, E.Y., Al-Mulla, F., Al-Temaimi, R., Brown, D.G., Colacci, A., Mondello, C., Raju, J., Ryan, E.P., Woodrick, J., Scovassi, A.I., Singh, N., Vaccari, M., Roy, R., Forte, S., Memeo, L., Salem, H.K., Amedei, A., Hamid, R.A., Lowe, L., Guarnieri, T., Bisson, W.H., 2015. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 36 (Suppl 1), 232-253.
Troemel, E.R., Chu, S.W., Reinke, V., Lee, S.S., Ausubel, F.M., Kim, D.H., 2006. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2:e183.
Tuomela, S., Autio, R., Buerki-Thurnherr, T., Arslan, O., Kunzmann, A., Andersson-Willman, B., Wick, P., Mathur, S., Scheynius, A., Krug, H.F., Fadeel, B., Lahesmaa, R., 2013. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One 8:e68415.
USEPA, 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Washington, DC: United States Environmental Protection Agency 27.
Wang, D., Guo, D., Bi, H., Wu, Q., Tian, Q., Du, Y., 2013. Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation. Toxicol In Vitro 27, 2117-2126.
Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y., Liu, J., 2009. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol In Vitro 23, 808-815.
Wang, L., Wang, L., Ding, W., Zhang, F., 2010. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10, 8617-8624.
Wang, Y., Yuan, L., Yao, C., Ding, L., Li, C., Fang, J., Sui, K., Liu, Y., Wu, M., 2014. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale 6, 15333-15342.
Watson, C., Ge, J., Cohen, J., Pyrgiotakis, G., Engelward, B.P., Demokritou, P., 2014. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8, 2118-2133.
Wong, S.W., Leung, P.T., Djurisic, A.B., Leung, K.M., 2010. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396, 609-618.
Wu, Q., Zhao, Y., Fang, J., Wang, D., 2014a. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6, 5894-5906.
Wu, Q., Zhao, Y., Li, Y., Wang, D., 2014b. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans. Nanoscale 6, 11204-11212.
Xiong, H.M., 2013. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater 25, 5329-5335.
Yin, H., Casey, P.S., McCall, M.J., Fenech, M., 2015. Size-dependent cytotoxicity and genotoxicity of ZnO particles to human lymphoblastoid (WIL2-NS) cells. Environ Mol Mutagen 56, 767-776.
Yu, K.N., Yoon, T.J., Minai-Tehrani, A., Kim, J.E., Park, S.J., Jeong, M.S., Ha, S.W., Lee, J.K., Kim, J.S., Cho, M.H., 2013. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro 27, 1187-1195.
Zhang, H., Chen, B., Jiang, H., Wang, C., Wang, H., Wang, X., 2011. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32, 1906-1914.
Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C., 2008. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83, 761-769.
Zhang, L.L., Jiang, Y.H., Ding, Y.L., Povey, M., York, D., 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9, 479-489.
Zhang, Z., Zhang, F., Zhang, H., 2016. In vitro response of immune cells on metal oxide nanoparticles with different solubility. J Nanosci Nanotechnol 16, 5546-5552.
Zhao, Y., Zhi, L., Wu, Q., Yu, Y., Sun, Q., Wang, D., 2016. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10, 1469-1479.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66894-
dc.description.abstract背景:奈米氧化鋅 (zinc oxide nanoparticles, ZnO-NPs) 被廣泛應用於醫藥產業以及日常生活用品中,因此ZnO-NPs的潛在毒性逐漸受到重視。有許多研究指出ZnO-NPs可能會引起細胞死亡、干擾細胞訊息傳遞並引起不正常發炎反應進而影響免疫系統,然而並沒有完整的研究探討長期暴露低濃度ZnO-NPs對宿主-病原菌 (host-pathogen) 關係之影響。
方法:本研究利用秀麗隱桿線蟲 (Caenorhabditis elegans) 以及綠膿桿菌 (Pseudomonas aeruginosa PA14) 之host-pathogen模式,評估長期暴露低濃度ZnO-NPs所造成之整體免疫能力影響。並且利用基因轉殖C. elegans、突變種以及即時定量聚合酶鏈鎖反應 (Q-PCR),探討免疫以及氧化壓力相關的調控路徑,研究ZnO-NPs引起免疫毒性之可能毒理機制。
結果:研究結果指出長期暴露低濃度500 μg/L ZnO-NPs以及ZnCl2會顯著減少C. elegans在遭受病原菌感染時的存活時間,相較於控制組LT50分別減少了11.4 (12.6%) 與12.4 (13.8%) 小時。在進一步的溶菌酶LYS-7::GFP實驗中,發現僅500 μg/L ZnO-NPs暴露會抑制溶菌酶LYS-7的表達 (0.8倍)。相同的是,在C. elegans腸道活菌數的分析中,也僅有長期暴露500 μg/L ZnO-NPs才可看到腸道內的菌落數與控制組相較顯著提升約3倍。此結果代表ZnO-NPs可能會抑制抗菌相關物質,而讓病原菌滋生而讓宿主更容易死於感染。在免疫以及壓力反應相關的轉錄因子SKN-1分析中,利用基因轉殖C. elegans LD1發現,僅於長期暴露500 μg/L ZnO-NPs後可觀察到顯著抑制SKN-1轉移入核的現象。進一步在SKN-1下游基因GCS-1::GFP實驗中發現,ZnO-NPs以及ZnCl2皆具有抑制GCS-1表達的毒性 (約0.8倍)。此結果建議ZnO-NPs和ZnCl2可能受不同的毒理機制調控。接著本研究更深入探討ZnO-NPs是否會抑制SKN-1的上游調控路徑p38 MAPK pathway。於loss of function突變種的實驗中,所有的暴露組與控制組皆無顯著差異,ZnO-NPs無法於p38 MAPK pathway 相關突變種中更進一步抑制免疫能力,代表ZnO-NPs抑制免疫能力可能與抑制p38 MAPK pathway相關。最後,本研究利用Q-PCR,針對C. elegans中免疫相關基因以及p38 MAPK pathway基因進行分析。基因表達實驗結果指出ZnO-NPs與ZnCl2會顯著抑制gcs-1,與前述GCS-1::GFP實驗的結果相符。此外,ZnO-NPs與ZnCl2亦會以不同比例抑制不同的免疫相關基因 (lys-1、lys-7以及spp-1);但於p38 MAPK pathway的基因中 (如pmk-1, sek-1, nsy-1),僅有ZnO-NPs具有抑制現象。因SKN-1為p38 MAPK下游調控之轉錄因子,所以ZnO-NPs抑制SKN-1入核的現象可能與抑制p38 MAPK pathaway有關。
結論:綜合本研究之實驗結果顯示,長期暴露500 μg/L ZnO-NPs會透過抑制p38 MAPK pathway而干擾下游免疫以及壓力反應相關轉錄因子如SKN-1之運作,影響免疫調控並造成ROS失衡;並進而於C. elegans與P. aeruginosa PA14之host-pathogen模式中,ZnO-NPs顯著降低C. elegans抵禦病原菌的免疫能力。長期暴露低濃度ZnO-NPs可能會抑制個體的整體免疫能力,而更容易遭受病原菌感染而死亡。
zh_TW
dc.description.abstractBackground: Zinc oxide nanoparticles (ZnO-NPs) are used extensively in medical industry and consumer products. Thus, the potential toxicity of ZnO-NPs has emerged as an important research topic. Several studies showed that ZnO-NPs induce cell death, interfere proinflammatory cytokines production and thus exert abnormal inflammation. However, the detailed interaction of host and pathogen by ZnO-NPs remains uncleared.
Methods: This study used Caenorhabditis elegans and Pseudomonas aeruginosa PA14 as a host-pathogen model to study the immunotoxicity. Additionally, transgenic C. elegans, mutants and real-time quantification polymerase chain reaction (Q-PCR) were implemented to investigate its possible underlying mechanisms including immunity and ROS related regulation pathways by prolonged ZnO-NPs exposure.
Results: The results showed that prolonged exposure to 500 μg/L ZnO-NPs and ZnCl2 significantly reduced the survival of C. elegans against the infection of P. aeruginosa PA14. Comparing to control, time to kill half of population (LT50) of prolonged exposure to 500 μg/L ZnO-NPs and ZnCl2 were reduced for 11.4 (12.6%) and 12.4 (13.8%) h, respectively. However, the reduction of lysozyme, LYS-7, expression was only observed in 500 μg/L ZnO-NPs treatment (0.8-fold). Similary, only prolonged exposure to 500 μg/L ZnO-NPs increased P. aeruginosa PA14 colonies about 3-fold in the intestine of C. elegans. This indicated that ZnO-NPs might inhibit antimicrobial factors and promote the accumulation of pathogen leading to death. Present study further investigated the relationship between ZnO-NPs and stress-responsive transcription factor SKN-1. By using the transgenic strain LD1, only 500 μg/L ZnO-NPs inhibited SKN-1 from translocating to nucleus. In GCS-1::GFP strain, both 500 μg/L ZnO-NPs and ZnCl2 decreased the expression of GCS-1 by 0.8-fold, which is a phase-II enzyme under SKN-1 regulation. This suggests that ZnO-NPs and ZnCl2 possibly possess different toxicity mechanisms. This study also investigated whether the toxicity of ZnO-NPs is associated with p38 MAPK pathway, which is a conserved regulation pathway of innate immunity acting upstream of SKN-1. By using loss of function p38 MAPK pathway mutants, the results showed that the survival of worms against P. aeruginosa PA14 infection among all examined mutants were comparable in the absence or presence of ZnO-NPs. This indicates that the immunosuppression effects of ZnO-NPs might be related to p38 MAPK pathway. Finally, Q-PCR was used to assess the effects of ZnO-NPs on the expression of immune and p38 MAPK pathway related genes. The downregulation of expression of gcs-1 by both ZnO-NPs and ZnCl2 was agreed with that of GCS-1::GFP assay. Moreover, both 500 μg/L ZnO-NPs and ZnCl2 reduced the expression of lys-1, lys-7 and spp-1. Interestingly, only 500 μg/L ZnO-NPs decreased the expression of p38 MAPK pathway genes (pmk-1, sek-1, nsy-1). As SKN-1 acts downstream of p38 MAPK, the inhibition of SKN-1 translocation might be related to the suppression of p38 MAPK pathway. The interference of p38 MAPK pathway not only affect immunity regulation but also leads to ROS imbalance.
Conclusions: To sum up, present study used a host-pathogen model to provide evidences that prolonged exposure to low concentration of ZnO-NPs (500 μg/L) suppresses innate immunity and affects oxidative stress regulation via suppression of p38 MAPK pathway and downstream transcription factor SKN-1. Prolonged exposure to ZnO-NPs might suppress the immunity of an individual and, therefore, makes individual more susceptible to pathogen infection.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:14:24Z (GMT). No. of bitstreams: 1
ntu-106-R04622002-1.pdf: 3056229 bytes, checksum: 5aa9ff18fbc1e0da1d080138766c3ef4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents碩士學位論文口試委員會審定書………………………………………………...… I
致謝 II
摘要 III
Abstract V
Graphical Abstract VII
Highlights VIII
目錄 IX
圖次 XII
表次 XIII
縮寫表 XIV
1. 研究動機 1
2. 文獻回顧與研究目的 3
2.1 奈米物質 (Nanomaterials, NMs) 3
2.2奈米氧化鋅 (zinc oxide nanoparticles, ZnO-NPs) 4
2.3 ZnO-NPs之生物毒理特性 6
2.3.1 ZnO-NPs之生物吸收、分布與排除特性 6
2.3.2 ZnO-NPs於in vitro實驗中之毒理特性 8
2.3.3 ZnO-NPs於in vivo實驗中之毒理特性 9
2.3.4 ZnO-NPs引起毒性之可能機制 10
2.4以秀麗隱桿線蟲 (Caenorhabditis elegans) 為模式生物探討ZnO-NPs之免疫毒性 12
2.4.1秀麗隱桿線蟲 (C. elegans) 12
2.4.2利用C. elegans探討免疫相關機制 14
2.4.3 p38 MAPK、SKN-1/Nrf對於C. elegans免疫能力之調控 17
2.5研究目的 19
2.5.1研究問題 19
2.5.2研究假說 19
2.5.3研究目標 19
3. 材料與方法 21
3.1實驗架構流程圖 21
3.2實驗藥品 22
3.3 ZnO-NPs基本物理化學特性分析 22
3.3.1穿透式電子顯微鏡 (TEM) 分析 22
3.3.2水合半徑與粒徑分布分析 22
3.3.3 ZnO-NPs解離速率分析 23
3.4實驗生物與培養條件 23
3.5 ZnO-NPs於C. elegans體內分布分析 24
3.6 Slow killing assay 24
3.7 C. elegans腸道菌落數分析 25
3.8 ZnO-NPs對LYS-7::GFP表達量影響分析 26
3.9 ZnO-NPs對GCS-1::GFP表達量影響分析 27
3.10 ZnO-NPs對SKN-1::GFP入核現象影響分析 27
3.11利用突變種C. elegans分析ZnO-NPs對p38 MAPK pathway之影響 28
3.12利用即時定量反轉錄聚合酶鏈鎖反應 (Q-PCR) 分析ZnO-NPs對基因表達量之影響 29
3.13統計分析方法 29
4. 結果與討論 30
4.1 ZnO-NPs基本物理化學分析 30
4.2 ZnO-NPs於C. elegans體內分佈分析 30
4.3長期暴露低濃度ZnO-NPs對C. elegans抵抗P. aeruginosa PA14感染之影響 34
4.4長期暴露低濃度ZnO-NPs對C. elegans溶菌酶LYS-7::GFP表達量之影響 39
4.5長期暴露低濃度ZnO-NPs對P. aeruginosa PA14在C. elegans腸道之colonization影響 42
4.6長期暴露低濃度ZnO-NPs對轉錄因子SKN-1 入核反應之影響 45
4.7長期暴露低濃度ZnO-NPs對SKN-1下游基因GCS-1::GFP表達量之影響 50
4.8長期暴露低濃度ZnO-NPs對p38 MAPK pathway之影響 53
4.9長期暴露低濃度ZnO-NPs對C. elegans免疫以及MAPK pathway相關基因表達之影響 58
5. 結論 62
6. 建議 63
7. 參考資料 64
8. 附錄 76
附錄1、EPA water配方 76
附錄2、引子序列 77
附錄3、ZnO-NPs基本特性 78
附錄4、ZnO-NPs抑制DAF-16轉移入核 80
dc.language.isozh-TW
dc.subject奈米氧化鋅zh_TW
dc.subject秀麗隱桿線蟲zh_TW
dc.subject免疫毒性zh_TW
dc.subjectSKN-1zh_TW
dc.subjectp38 MAPK路徑zh_TW
dc.subjectimmunotoxicityen
dc.subjectCaenorhabditis elegansen
dc.subjectZinc oxide nanoparticles (ZnO-NPs)en
dc.subjectp38 MAPK pathwayen
dc.subjectSKN-1en
dc.title奈米氧化鋅對秀麗隱桿線蟲造成之免疫反應機制分析zh_TW
dc.titleRegulation of immune responses by zinc oxide nanoparticles and its underlying mechanisms in the nematode Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張俊哲,黃雯華,皇甫維君
dc.subject.keyword奈米氧化鋅,秀麗隱桿線蟲,免疫毒性,SKN-1,p38 MAPK路徑,zh_TW
dc.subject.keywordZinc oxide nanoparticles (ZnO-NPs),Caenorhabditis elegans,immunotoxicity,SKN-1,p38 MAPK pathway,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201703394
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved