Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成(Chien-Cheng Chang)
dc.contributor.authorYu-Chun Keen
dc.contributor.author柯郁淳zh_TW
dc.date.accessioned2021-06-17T01:14:20Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation[1] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, et al. Atomic layers of hybridized boron nitride and graphene domains. Nature materials, 9(5):430–435, 2010.
[2] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature nanotechnology, 8(2):119–124, 2013.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
[4] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature materials, 6(3):183–191, 2007.
[5] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano letters, 8(3):902–907, 2008.
[6] C. Lee, X. Wei, J. W. Kysar, and J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388, 2008.
[7] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer mos2 transistors. Nature nanotechnology, 6(3):147–150, 2011.
[8] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang. Black phosphorus field-effect transistors. Nature nanotechnology, 9(5):372–377, 2014.
[9] Z. Guo, D. Zhang, and X. G. Gong. Thermal conductivity of graphene nanoribbons. Applied physics letters, 95(16):163103, 2009.
[10] J. Hu, X. Ruan, and Y. P. Chen. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano letters, 9(7):2730–2735, 2009.
[11] N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: ademonstration of magic flexibility. Nanotechnology, 22(10):105705, 2011.
[12] C. Zhang, X. L. Hao, C. X. Wang, N. Wei, and T. Rabczuk. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation. Scientific reports, 7, 2017.
[13] T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, and J. Zhong. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology, 21(24):245701, 2010.
[14] Y. C. Chen, S. C. Lee, T. H. Liu, and C. C. Chang. Thermal conductivity of boron nitride nanoribbons: Anisotropic effects and boundary scattering. International Journal of Thermal Sciences, 94:72–78, 2015.
[15] J. Song and N. V. Medhekar. Thermal transport in lattice-constrained 2d hybrid graphene heterostructures. Journal of Physics: Condensed Matter, 25(44):445007, 2013.
[16] X. K. Chen, Z. X. Xie, W. X. Zhou, and K. Q. Chen. The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain. Journal of Physics D: Applied Physics, 49(11):115301, 2016.
[17] J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, et al. Two-dimensional phonon transport in supported graphene. Science, 328(5975):213–216, 2010.
[18] I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano letters, 13(2):550–554, 2013.
[19] H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 7(8):1232–1240, 2014.
[20] J. L. Tsai and J. F. Tu. Characterizing mechanical properties of graphite using molecular dynamics simulation. Materials & Design, 31(1):194–199, 2010.
[21] H. Zhao, K. Min, and N. R. Aluru. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano letters, 9(8):3012–3015, 2009.
[22] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci. Monolayer honeycomb structures of group-iv elements and iii-v binary compounds: First-principles calculations. Physical Review B, 80(15):155453, 2009.
[23] M. Topsakal and S. Ciraci. Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Physical Review B, 81(2):024107, 2010.
[24] S. Zhao and J. Xue. Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. Journal of Physics D: Applied Physics, 46(13):135303, 2013.
[25] C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology, 20(38):385707, 2009.
[26] Y. Ding, Y. Wang, and J. Ni. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 95(12):123105, 2009.
[27] J. He, K. Q. Chen, Z. Q. Fan, L. M. Tang, and W. P. Hu. Transition from insulator tometal induced by hybridized connection of graphene and boron nitride nanoribbons. Applied Physics Letters, 97(19):239, 2010.
[28] Y. Liu, X. Wu, Y. Zhao, X. C. Zeng, and J. Yang. Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges. The journal of physical chemistry C, 115(19):9442–9450, 2011.
[29] Z. Yu, M. L. Hu, C. X. Zhang, C. Y. He, L. Z. Sun, and J. Zhong. Transport properties of hybrid zigzag graphene and boron nitride nanoribbons. The Journal of Physical Chemistry C, 115(21):10836–10841, 2011.
[30] H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg. “white graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano letters, 10(12):5049–5055, 2010.
[31] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. The Journal of chemical physics, 27(5):1208–1209, 1957.
[32] A. Rahman. Correlations in the motion of atoms in liquid argon. Physical Review, 136(2A):A405, 1964.
[33] L. Verlet. Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical review, 159(1):98, 1967.
[34] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649, 1982.
[35] J. W. Gibbs. On the equilibrium of heterogeneous substances. American Journal of Science, (96):441–458, 1878.
[36] P. Langevin. Sur la théorie du mouvement brownien. CR Acad. Sci. Paris, 146(530-533):530, 1908.
[37] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 52(2):255-268, 1984.
[38] W. G. Hoover. Canonical dynamics: equilibrium phase-space distributions. Physical review A, 31(3):1695, 1985.
[39] S. Nosé. Constant-temperature molecular dynamics. Journal of Physics: Condensed Matter, 2(S):SA115, 1990.
[40] F. Müller-Plathe. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of chemical physics, 106(14):6082–6085, 1997.
[41] M. Zhang, E. Lussetti, L. E. S. de Souza, and F. Müller-Plathe. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. The Journal of Physical Chemistry B, 109(31):15060–15067, 2005.
[42] R. Clausius. Xvi. on a mechanical theorem applicable to heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(265):122–127, 1870.
[43] J. H. Irving and J. G. Kirkwood. The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. The Journal of chemical physics, 18(6):817–829, 1950.
[44] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1):1–19, 1995.
[45] J. Li. Atomeye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 11(2):173, 2003.
[46] C. Sevik, A. Kınacı, J. B. Haskins, and T. Çağın. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B, 84(8):085409, 2011.
[47] C. Sevik, A. Kınacı, J. B. Haskins, and T. Çağın. Influence of disorder on thermal transport properties of boron nitride nanostructures. Physical Review B, 86(7):075403, 2012.
[48] A. Kınacı, J. B. Haskins, C. Sevik, and T. Çağın. Thermal conductivity of bn-c nanostructures. Physical Review B, 86(11):115410, 2012.
[49] E. Muñoz, J. Lu, and B. I. Yakobson. Ballistic thermal conductance of graphene ribbons. Nano letters, 10(5):1652–1656, 2010.
[50] F. Hao, D. Fang, and Z. Xu. Mechanical and thermal transport properties of graphene with defects. Applied physics letters, 99(4):041901, 2011.
[51] Y. Y. Zhang, Y. Cheng, Q. X. Pei, C. M. Wang, and Y. Xiang. Thermal conductivity of defective graphene. Physics Letters A, 376(47):3668–3672, 2012.
[52] J. W. Kang, J. J. Seo, K. R. Byun, and H. J. Hwang. Defects in ultrathin copper nanowires: Atomistic simulations. Physical Review B, 66(12):125405, 2002.
[53] T. H. Liu, S. C. Lee, C. W. Pao, and C. C. Chang. Anomalous thermal transport along the grain boundaries of bicrystalline graphene nanoribbons from atomistic simulations. Carbon, 73:432–442, 2014.
[54] J. M. Carlsson, L. M. Ghiringhelli, and A. Fasolino. Theory and hierarchical calculations of the structure and energetics of [0001] tilt grain boundaries in graphene. Physical Review B, 84(16):165423, 2011.
[55] L. A. Rowe and R. Jain. Acm sigmm retreat report on future directions in multimedia research. ACM Transactions on Multimedia Computing, Communications, and Applications, 1(1):3–13, 2005.
[56] C. Ophus, A. Shekhawat, H. Rasool, and A. Zettl. Large-scale experimental and theoretical study of graphene grain boundary structures. Physical Review B, 92(20):205402, 2015.
[57] K. Huang. Statistical mechanics. New York: John Wiley & Sons, 2 edition, 1987.
[58] J. M. Haile. Molecular dynamics simulation. New York: John Wiley & Sons, 1992.
[59] M. T. Dove. Introduction to lattice dynamics. Cambridge university press, 1993.
[60] G. Chen. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press, 2005.
[61] M. Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford University Press, 2010.
[62] W. Nolting. Grundkurs theoretische physik 6: Statistische physik. Springer, 2014.
[63] T. H. Liu. An investigation of mechanical and thermal properties of graphene grain boundaries by atomistic simulations. PhD dissertation, National Taiwan University, 2012.
[64] S. C. Lee. An investigation of mechanical and thermal properties of hexagonal-boron nitride by atomistic simulations. Master thesis, National Taiwan University, 2013.
[65] Y. T. Tsai. An investigation of mechanical and thermal properties of two-dimensional boron carbon nitride by molecular dynamics. Master thesis, National Taiwan University, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66890-
dc.description.abstract本論文係使用分子動力學模擬方法搭配Tersoff型BCN勢能函數,研究二維石墨烯-氮化硼異質結構的熱學與力學性質。在研究中,定義石墨烯-氮化硼異質奈米帶的組成比例(w_Gr)為石墨烯奈米帶寬度佔其整體寬度之比例。在熱學性質方面,主要研究組成比例、手性角、尺寸、系統溫度與缺陷對於石墨烯-氮化硼異質奈米帶熱傳導係數之影響。首先探討石墨烯-氮化硼異質奈米帶在不同組成比例下的熱傳導係數,結果顯示鋸齒型石墨烯-氮化硼異質奈米帶的熱傳導係數幾乎隨著組成比例上升而單調遞增,而扶手椅型石墨烯-氮化硼異質奈米帶的熱傳導係數則在低組成比例(w_Gr為0.1至0.4)時有小於純氮化硼奈米帶的現象。接著進一步研究額外9個手性角形態的石墨烯-氮化硼異質奈米帶,結果顯示在低組成比例時的熱傳導係數亦小於同手性角的純氮化硼奈米帶。此外,尺寸效應與系統溫度對於石墨烯-氮化硼異質奈米帶的熱傳導係數皆有顯著的影響。再者,亦探討孔洞缺陷與晶界缺陷對於石墨烯-氮化硼異質奈米帶的熱傳導係數有何影響。就孔洞缺陷而言,分別模擬刪除硼、碳與氮原子的情形,結果顯示當石墨烯-氮化硼異質奈米帶具有孔洞缺陷時,其熱傳導係數將會劇烈地下降。在相同的刪除原子濃度下,具有碳原子孔洞缺陷的石墨烯-氮化硼異質奈米帶擁有最小的熱傳導係數,而硼原子孔洞缺陷與氮原子孔洞缺陷對於其熱傳性質的影響則具有相似性。就晶界缺陷而言,石墨烯晶界-氮化硼異質奈米帶會因為晶界的存在與折曲結構的產生,使得其熱傳導係數大幅地下降,因此具有更高的熱調變性。在力學性質方面,針對鋸齒型石墨烯-氮化硼異質異質奈米帶進行分析,發現其楊氏係數隨著組成比例增加而上升,破斷應變大致上具有隨著組成比例增加而下降之趨勢,而破斷強度與組成比例並不存在明顯的關係。zh_TW
dc.description.abstractIn this study, we investigate thermal and mechanical properties of two dimensional graphene-boron nitride heterostructures by molecular dynamics simulations with the Tersoff-type BCN potential function. The composition ratio of the hybrid graphene-boron nitride nanoribbon is defined as the width of the graphene nanoribbon divided by the width of the whole hybrid nanoribbon, and it is denoted by w_Gr. In terms of thermal properties, we mainly investigate the effects of composition ratios, chiral orientations, sizes, system temperatures and defects on the thermal conductivity. Firstly, we study the thermal conductivity of hybrid nanoribbons with different composition ratios. The results show that thermal conductivity of zigzag hybrid nanoribbons increases almost monotonically as the composition ratio raises, while the thermal conductivity of armchair ones with small composition ratios (w_Gr is in the range of 0.1 to 0.4) is lower than that of pristine boron nitride nanoribbons. The further study shows that the thermal conductivity of hybrid nanoribbons with small composition ratios in the additional 9 chiral orientations is lower than that of pristine boron nitride nanoribbons as well. In addition, size effects and system temperatures have a significant impact on the thermal conductivity. Besides, we also explore the effects of vacancy defects and grain boundary defects on the thermal conductivity. In the case of vacancy defects, the conditions for deleted boron, carbon and nitrogen atoms are considered respectively. The results show that the thermal conductivity will drop drastically when hybrid nanoribbons have vacancy defects. Under the same concentration of deleted atoms, carbon atom vacancy defects result in the greatest decrease of the thermal conductivity, and the influence of boron atom vacancy defects on thermal properties is similar to nitrogen atom vacancy defects. In the case of grain boundary defects, we investigate thermal properties of the hybrid graphene grain boundary-boron nitride nanoribbon. The thermal conductivity decreases significantly because of the existence of grain boundaries and the generation of folding structures. Hence hybrid graphene grain boundary-boron nitride nanoribbons have the higher thermomutability. In terms of mechanical properties, we analyze zigzag hybrid nanoribbons with different composition ratios. The results reveal that Young's modulus increases as the composition ratio raises, and the fracture strain generally has a tendency to decrease as the composition ratio raises. However, there is no relationship between the fracture strength and the composition ratio.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:14:20Z (GMT). No. of bitstreams: 1
ntu-106-R04543016-1.pdf: 14178440 bytes, checksum: 79a7169e60c6f5f31d0cd191f7f1c0a8 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 石墨烯與氮化硼簡介 2
1.3 認識二維石墨烯-氮化硼異質結構 5
1.3.1 原子結構 5
1.3.2 製造方法 6
1.4 文獻回顧 8
1.4.1 熱學性質 8
1.4.2 力學性質 10
1.4.3 電學性質 11
1.5 研究目的 13
1.6 本文架構 14
第二章 分子動力學理論 15
2.1 前言 15
2.2 勢能函數 16
2.3 Verlet積分 18
2.3.1 Verlet法 18
2.3.2 跳蛙法 19
2.3.3 Velocity-Verlet法 20
2.4 系綜 21
2.4.1 微正則系綜 22
2.4.2 正則系綜 27
2.5 熱浴與控溫方法 32
2.5.1 Langevin熱浴 32
2.5.2 Nosè-Hoover熱浴 34
2.6 共軛梯度法 38
第三章 分子動力學模擬方法 40
3.1 熱學參數 40
3.1.1 熱傳導係數 40
3.1.2 聲子態密度 42
3.1.3 聲子頻帶結構 43
3.2 力學參數 46
3.2.1 維里應力 46
3.2.2 彈性常數 47
3.3 模擬軟體 47
第四章 二維石墨烯-氮化硼異質結構的熱學與力學性質 48
4.1 石墨烯-氮化硼異質奈米帶的原子構型與組成比例 49
4.2 組成比例對於熱傳性質的影響 50
4.3 手性角對於熱傳性質的影響 51
4.3.1 不同手性角之石墨烯-氮化硼異質奈米帶的原子構型 51
4.3.2 改變手性角的計算結果 52
4.4 尺寸對於熱傳性質的影響 55
4.4.1 長度對於熱傳性質的影響 55
4.4.2 寬度對於熱傳性質的影響 59
4.5 系統溫度對於熱傳性質的影響 61
4.6 孔洞缺陷對於熱傳性質的影響 63
4.6.1 孔洞缺陷簡介 63
4.6.2 改變刪除原子濃度的計算結果 64
4.7 石墨烯晶界-氮化硼異質奈米帶的熱傳性質 67
4.7.1 石墨烯晶界-氮化硼異質奈米帶的原子構型 67
4.7.2 改變石墨烯晶界錯向角的計算結果 71
4.8 石墨烯-氮化硼異質奈米帶的力學性質 74
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 80
參考文獻 81
dc.language.isozh-TW
dc.subject氮化硼zh_TW
dc.subject楊氏係數zh_TW
dc.subject石墨烯zh_TW
dc.subject二維材料zh_TW
dc.subject熱傳導係數zh_TW
dc.subject分子動力學zh_TW
dc.subject奈米帶zh_TW
dc.subject異質結構zh_TW
dc.subjectThermal conductivityen
dc.subjectGrapheneen
dc.subjectBoron nitrideen
dc.subjectNanoribbonsen
dc.subjectHeterostructuresen
dc.subjectMolecular dynamicsen
dc.subjectTwo Dimensional materialsen
dc.title二維石墨烯-氮化硼異質結構之熱學與力學性質的分子動力學研究zh_TW
dc.titleAn Investigation of Thermal and Mechanical Properties of Two Dimensional Graphene-Boron Nitride Heterostructures by Atomistic Simulationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張家歐(Chia-Ou Chang),朱錦洲(Chin-Chou Chu),黃世霖(Shih-Lin Huang),宮春斐(Chun-Fei Kung)
dc.subject.keyword二維材料,石墨烯,氮化硼,異質結構,奈米帶,分子動力學,熱傳導係數,楊氏係數,zh_TW
dc.subject.keywordTwo Dimensional materials,Graphene,Boron nitride,Nanoribbons,Heterostructures,Molecular dynamics,Thermal conductivity,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201703057
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
13.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved