Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6688
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊烽正(Feng-Cheng Yang)
dc.contributor.authorSzu-Ting Chouen
dc.contributor.author周思婷zh_TW
dc.date.accessioned2021-05-17T09:16:20Z-
dc.date.available2015-08-15
dc.date.available2021-05-17T09:16:20Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationAltiparmak, F., Gen, M., Lin, L. & Paksoy, T., 2006. A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51 (1), 196-215.
Chen, D.-B., Zou, F. & Wang, J.-T., 2011. A multi-objective endocrine pso algorithm and application. Applied Soft Computing, 11 (8), 4508-4520.
Chung, L.-C., 2004. A Genetic Algorithm and Objective Randomly Switched Strategy Based Multi-Objective Programming Mtehod. Thesis(MS). National Taiwan University.
Deb, K., 1999. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evol. Comput., 7 (3), 205-230.
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6 (2), 182-197.
Fischer, M., Jahn, H. & Teich, T., 2004. Optimizing the selection of partners in production networks. Robotics and Computer-Integrated Manufacturing, 20 (6), 593-601.
Hajela, P. & Lin, C.Y., 1992. Genetic search strategies in multicriterion optimal design. Structural and Multidisciplinary Optimization, 4 (2), 99-107.
Huband, S., Hingston, P., While, L. & Barone, L., Year. An evolution strategy with probabilistic mutation for multi-objective optimisationed.^eds. Evolutionary Computation, 2003. CEC '03. The 2003 Congress on, 2284-2291 Vol.4.
Ip, W.H., Huang, M., Yung, K.L. & Wang, D., 2003. Genetic algorithm solution for a risk-based partner selection problem in a virtual enterprise. Computers & Operations Research, 30 (2), 213-231.
Knowles, J. & Corne, D., Year. The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisationed.^eds. Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, 105 Vol. 1.
Large, J.W., Jones, D.F. & Tamiz, M., 2007. Hyper-spherical inversion transformations in multi-objective evolutionary optimization. European Journal of Operational Research, 177 (3), 1678-1702.
Li, X., 2003. A non-dominated sorting particle swarm optimizer for multiobjective optimization. Proceedings of the 2003 international conference on Genetic and evolutionary computation: PartI. Chicago, IL, USA: Springer-Verlag, 37-48.
Murata, T., Ishibuchi, H. & Tanaka, H., 1996. Multi-objective genetic algorithm and its applications to flowshop scheduling. Computers & Industrial Engineering, 30 (4), 957-968.
Pan, C.-C, 2008. Water Flow-like Algorithm for Sequencing Problems. Thesis(MS). National Taiwan University.
Parsopoulos, K.E. & Vrahatis, M.N., 2002. Recent approaches to global optimization problems through particle swarm optimization. 1 (2-3), 235-306.
Shih-Yuan, C., Tsung-Ying, S., Sheng-Ta, H. & Cheng-Wei, L., Year. Cross-searching strategy for multi-objective particle swarm optimizationed.^eds. Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, 3135-3141.
Srinivas, N. & Deb, K., 1994. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput., 2 (3), 221-248.
Tripathi, P.K., Bandyopadhyay, S. & Pal, S.K., Year. Adaptive mufti-objective particle swarm optimization algorithmed.^eds. Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, 2281-2288.
Veldhuizen, D.a.V., 1999. Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations. Air Force Institute of Technology.
Wang, P.-Y., 2006. Water Flow-like Algorithm for Discrete Optimum Problems. Thesis(MS). National Taiwan University.
Watanabe, M., Ida, K. & Gen, M., 2005. A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Computers & Industrial Engineering, 48 (4), 743-752.
Yang, F.-C. & Wang, Y.-P., 2007. Water flow-like algorithm for object grouping problems. Journal of the Chinese Institute of Industrial Engineers, 24 (6), 475-488.
Yeh, W.-C. & Chuang, M.-C., 2011. Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Systems with Applications, 38 (4), 4244-4253.
Youyuan, W. & Weiping, X., Year. Research on partners selection of collaborative design based on ant and genetic algorithmed.^eds. International Conference on Natural Computation, 554-558.
Zitzler, E., Deb, K. & Thiele, L., 2000. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput., 8 (2), 173-195.
Zitzler, E. & Thiele, L., 1999. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. Evolutionary Computation, IEEE Transactions on, 3 (4), 257-271.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6688-
dc.description.abstractThe newly developed optimization algorithm, Water Flow-like Algorithm, that is WFA, simulates a solution searching agent as a water flow traversing the lowest point of a terrain. The number of water flows is dynamically changed while water flows split into subflows against rough terrain and merge several flows into one single flow. Flow splitting and merging are mimicked by the WAF to conduct efficient optimum search in the solution space. In addition, water evaporation and precipitation are simulated in WFA to jump out of local optima or to broaden the searching area. This paper presents a WFA for Multi-objective Continuous Optimization Problems, namely WFA4MC. This paper presents three merging methods for different merging conditions. First, the location-based merging approach is frequently adopted in general optimization problems, either continuous or discrete ones. In addition to the location-based approach, we propose an objective-based merging approach for our multi-objective optimization problems, where a set of non-dominated solutions with objective values dispersedly distributed in the objective space is preferred.
In order to prove WFA4MC performances precisely, this research proposes Correctness and Coverness to measure non-dominated solutions in ZDT functions.
Besides, the Generational Distance is used in the comparison with other heuristic Algorithms. The result showed that based on the same limit of the number of objective function calls, the WFA4MC outperform than others.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:16:20Z (GMT). No. of bitstreams: 1
ntu-101-R99546010-1.pdf: 1773769 bytes, checksum: 22e694231fb1be1d2555730ffa909670 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 導論 1
1.1研究背景 1
1.2研究目的 2
1.3研究方法 2
1.4 章節概論 3
第二章 文獻探討 4
2.1仿水流優化演算法 4
2.2多目標優化演算法 6
2.2.1 基因演算法 7
2.2.2 多目標基因演算法 7
2.2.3 粒子群演算法 9
2.2.4 多目標粒子群演算法 9
2.3文獻小結 10
第三章 多目標連續型仿水流優化演算法 11
3.1多目標連續優化問題 11
3.2 WFA4MC演算流程 12
3.3 WFA4MC整體演算程序 26
3.4多目標連續型仿水流優化演算法小結 27
第四章 多目標連續型仿水流優化演算法範例驗證 28
4.1測試的多目標優化標竿問題 28
4.2評量指標 34
4.2.1收斂距離(Generational Distance)和均勻變異(Spacing metric) 34
4.2.2正確率(Correctness)和涵蓋度(Coverness) 36
4.3多目標連續型仿水流優化演算法求解系統 39
4.4標竿問題效能測試 41
4.4.1匯流模式的比較 42
4.4.2 WFA4MC成效結果分析 45
4.5範例驗證小結 47
第五章 結論與建議 49
5.1結論 49
5.2未來研究與建議 50
參考文獻 51
附錄A 53
附錄B 67
dc.language.isozh-TW
dc.title多目標連續型仿水流優化演算法zh_TW
dc.titleWater Flow-like Optimization Algorithm for Multi-objective Continuous Optimization Problemsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃奎隆(Kwei-Long Huang),羅士哲(Shih-Che Lo)
dc.subject.keyword仿水流優化演算法,多目標連續優化問題,ZDT標竿問題,正確率(Correctness),涵蓋度(Coverness),zh_TW
dc.subject.keywordWater Flow-like Algorithm,Multi-objective Continuous Optimization Problem,ZDT functions,Correctness,Coverness,en
dc.relation.page133
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved