請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66889完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良得(Lean-Teik Ng) | |
| dc.contributor.author | Han-Mei Tseng | en |
| dc.contributor.author | 曾寒莓 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:14:19Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | 朱鈞。1984。作物學通論 - 作物與環境。臺灣商務印書館。臺北。臺灣。441頁。
吳岳文。1995。臺灣市售 Cynanchum 屬生藥之生藥學的研究及同屬生藥 C. taiwanianum Yamazaki 之抗炎症與保肝作用的藥效評估。高雄醫學大學天然藥物研究所碩士班學位論文。高雄。台灣。 巫文修。2013。氮肥施用量對祕魯酸漿的生長、生理營養及多酚類含量的分析。國立臺灣大學農業化學所碩士論文。臺北。臺灣。125頁。 李後易。2012。薄葉牛皮消抗氧化、抗菌與抗發炎活性之研究。屏東科技大學食品科學系所博士論文。屏東。臺灣。173頁。 林映儒、鄭智馨、曾聰堯、王尚禮、郭鴻裕。2011。平地長期林地之土壤性質與有機碳續存量。臺灣農業化學與食品科學。49:260-274。 徐原田、鄭心嫻。1978。磷鉀肥施用量與行距密度對山藥產量及蛋白質含量之影響。中華農業研究。27:315-324。 張峰、王建華、余松烈、陳雨海、董慶裕。2006。白首烏氮、磷、鉀積累分配特點及其與物質生產的關係。植物營養與肥料學報。12:396-373。 陳仁炫。1999。合理化施肥之要領與對策。合理化施肥說明講習會講義。中華土壤肥料學會。台中。2:1-11。 陳惠英、顏國欽。1998。自由基、抗氧化防禦與人體健康。臺灣營養學會雜誌。 23:105-121。 彭武男、辛仲文、林維和。1994。栽植密度及鉀肥用量對甘藷塊根大小及產量的影響。桃園農業改良場研究報告。17:1-8。 黃保林。1995。薄葉牛皮消及臺灣黃精之活性成分研究。高雄醫學大學藥學研究所學位論文。高雄。臺灣。141頁。 廖乾華、劉廣泉。2004。山藥氮、鉀肥施用量之研究。桃園區農業改良場研究彙報。55:23-35。 劉德宏。2015。有機質肥料施用量對萬年薯的生長及機能性成分含量之影響。國立臺灣大學農業化學研究所學位論文。臺北。臺灣。76頁。 蔡永暭。2000。施氮對芋植株生長及乾物生產分配之影響。高雄區農業改良場研究彙報 。11:22-36。 蔣英、李秉滔。1977。夾竹桃科、蘿藦科。中國植物誌。63:309-384。 賴文龍。2000。綠肥與輪作。菠菜綜合管理。楊秀珠主編。德基水庫集水區第四期整體治理規劃肥料農藥使用管理之研究與推廣技術專刊。5:25-30。 龔財立、姜金龍、辛仲文。1999。氮鉀肥施用量對懷山藥塊莖性狀及產量效應。桃園農業改良場研究報。36:1-6。 Åkerström, A. Å. Forsum, K. Rumpunen, A. Jäderlund and U. Bång. 2009. Effects of sampling time and nitrogen fertilization on anthocyanidin levels in Vaccinium myrtillus Fruits. Journal of Agricultural and Food Chemistry 24: 1479-1487. Ali, L., B. W. Alsanius, A. K. Rosberg, B. Svensson, T. Nielsen and M. E. Olsson. 2012. Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. European Food Research and Technology 234: 33-44. Allison, M. F., J. H. Flower and E. J. Allen. 2001. Responses of potato (Solanum tuberosum) to potassium fertilizers. Journal of Agricultural Science 136: 407-426. Arshad, M. A., and S. Martin. 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment 88: 153-160. Borie, F., and H. Zunino. 1983. Organic matter-phosphorus associations as a sink in P-fixation processes in allophanic soils of Chile. Soil Biology and Biochemistry 15: 599-603. Bourke, R. M. 1985. Influence of nitrogen and potassium fertilizer on growth of sweet potato (Ipomoea batatas) in Papua New Guinea. Field Crops Research 12: 363-375. Brady, N. C., and R. R. Weil. 2010. Elements of the nature and properties of soils. Pearson Prentice Hall. Upper Saddle River, New Jersey, USA. 624 pp. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total methods of soil analysis, part 2, chemical and microbiological properties. American Society of Agronomy. Inc., Publisher, Madison, Wisconsin, USA. pp. 595-624. Calixto, J. B. 2000. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research 33: 179-189. Canter, P. H., H. Thomas, and E. Ernst. 2005. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology 23: 180-185. Chang, C. C., M. H. Yang, H. M. Wen, and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178-182. Chaves, M. M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103: 551-560. Chen, Z. S., J. S. Lai and Y. H. Kao. 1991. The constituents of Cynanchum taiwanianum. Journal of the Chinese Chemical Society 38: 393-396. Devasagayam, T. P. A., J. C. Tilak, K. K. Boloor, K. S. Sane,, S. S. Ghaskadbi, and R. D. Lele. 2004. Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India 52: 794-804. Dillard, C. J., and J. B. German. 2000. Phytochemicals: nutraceuticals and human health. Journal of the Science of Food and Agriculture 80: 1744-1756. Epstein E. and A. J. Bloom. 2005 Mineral nutrition of plants: principles and perspectives. p. 400. 2nd edn. Sinauer Associates. Inc., publishers, England. Fijise, K. and Y. Tsuno. 1967. Effect of potassium on the dry matter production of sweet potato. In: Proceedings of the International Symposium on Tropical Root Crops 1: 20-33. Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In ‘Methods of soil analysis. Part 1. Physical and mineralogical methods’. American Society of Agronomy. Inc., Publisher, Madison, Wisconsin, USA. pp. 383-411. Giorgi, A., M. Mingozzi, M. Madeo, G. Speranza, and M. Cocucci. 2009. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chemistry 114: 204-211. Haeder, H. E., K. Mengel and H. Forster. 1973. The effect of potassium on translocation of photosynthates and yield pattern of potato plants. Journal of Agricultural and Food Chemistry 24: 1479-1487. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237: 173-195. Hornok, L. 1992. The cultivation of medicinal plants. Cultivation and Processing of Medicinal Plants. pp. 187-196. Wiley Medical Publication. Hungary. Huang, P. L., C. M. Lu, M. H. Yen, R. R. Wu, and C. N. Lin. 1995. Acetophenones from Cynanchum taiwanianum. Phytochemistry 40: 537-541. Huang, P. L., S. J. Won, S. H. Day, and C. N. Lin. 1999. A cytotoxic acetophenone with a novel skeleton, isolated from Cynanchum taiwanianum. Helvetica Chimica Acta 82: 1716-1720. Jones, C. G., and Hartley, S. E. 1999. A protein competition model of phenolic allocation. Oikos 86: 27-44. Kavvadias, V., C. Paschalidis, G. Akrivos and D. Petropoulos. 2012. Nitrogen and potassium fertilization responses of potato (Solanum tuberosum) cv. Spunta. Communications in Soil Science and Plant Analysis 43: 176-189. Kováčik, J., B. Klejdus, M. Bačkor, and M. Repčák. 2007. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science 172: 393-399. Kujala, T. S., J. M. Loponen, K. D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48: 5338-5342. Lauber, C. L., M. S. Strickland, M. A. Bradford, and N. Fierer. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry 40: 2407-2415. Lee, H. I., H. I. Lee, J. H. Guo, C. C Wu, M. C. Ti, K. P. Lan, C. Y. Hu, C. Y. Lo, C. C. Yang, Y. F. Lin and T. C. Wang. 2011. Anti-inflammatory effects of Cynanchum taiwanianum rhizome aqueous extract in IL-1β-induced NRK-52E cells. Pharmaceutical Biology 49: 437-444. Lee, M. K., H. Yeo, J. Kim, and Y. C. Kim. 2000a. Protection of rat hepatocytes exposed to CCl4 in‐vitro by cynandione A, a biacetophenone from Cynanchum wilfordii. Journal of Pharmacy and Pharmacology 52: 341-345. Lee, M. K., H. Yeo, J. Kim, G. J. Markelonis, T. H. Oh, and Y. C. Kim. 2000b. Cynandione A from Cynanchum wilfordii protects cultured cortical neurons from toxicity induced by H2O2, L-glutamate, and kainate. Journal of Neuroscience Research 59: 259-264. Li, W. L., H. C. Zheng, J. Bukuru, and N. De Kimpe. 2004. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. Journal of Ethnopharmacology 92: 1-21. Lin, C. N., P. L. Huang, C. M. Lu, M. H. Yen, and R. R. Wu. 1997. Revised structure for five acetophenones from Cynanchum taiwanianum. Phytochemistry 44: 1359-1363. Lin, C. N., P. L. Huang, J. J. Wang, S. H. Day, H. C. Lin, J. P. Wang, Y. L. Ko and C. M. Teng. 1998. Stereochemistry and biological activities of constituents from Cynanchum taiwanianum. Biochimica et Biophysica Acta - General Subjects 1380: 115-122. Lin, C. C., M. M. Yen, Y. W. Wu, and G. J. Xu. 1995. Histological study on crude drug pai-wei, pi-chein and indigenous species of Cynanchum in Taiwan. American Journal of Chinese Medicine 23: 305-312. Lin, Y. L., T. C. Lin, and Y. H. Kuo. 1995. Five new pregnane glycosides from Cynanchum taiwanianum. Journal of Natural Products 58: 1167-1173. Lin, Y. L., T. C. Lin, and Y. H. Kuo. 1997b. Two acetophenone glucosides, cynanonesides A and B, from Cynanchum taiwanianum and revision of the structure for cynandione A. Journal of Natural Products 60: 368-370. Lin, Y. L., Y. M. Wu, and Y. H. Kuo. 1997. Revised structures for four acetophenones from Cynanchum taiwanianum. Phytochemistry 45: 1057-1061. Liu K., T. Q. Zhang, C. S. Tan, and T. Astatkie. 2011. Responses of fruit yield and quality of processing tomato to drip-Irrigation and fertilizers phosphorus and potassium. Agronomy Journal 103: 1339-1345. Lu, F. Y., M. T. Kao, S. F. Huang, and J. C. Wang. 1998. Asclepiadaceae. Flora of Taiwan 4: 223. Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany 105: 1141-1157. McCord, J. M. 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine 108: 652-659. McLean, E. O. 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. Inc., Publisher, Madison, Wisconsin, USA. pp. 199-224. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15: 1409-1416. Mittelstraß, K., D. Treutter, M. Pleßl, W. Heller, E. F. Elstner, and I. Heiser. 2006. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biology 8: 653-661. Mogren, L. M., M. E. Olsson, and U. E. Gertsson. 2006. Quercetin content in field-cured onions (Allium cepa L.): effects of cultivar, lifting time, and nitrogen fertilizer level. Journal of Agricultural and Food Chemistry 54: 6185-6191. Murphy, J. A. M. E. S., and J. P. Riley 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36. Nguyen, P. M., and E. D. Niemeyer. 2008. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry 56: 8685-8691. Nguyen, P. M., E. M. Kwee, and E. D. Niemeyer. 2010. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemistry 123: 1235-1241. Pokorný, J. 1991. Natural antioxidants for food use. Trends Food Science and Technology 2: 223-227. Pichersky, E., and D. R. Gang. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science 5: 439-445. Redovniković, I. R., M. Bogović, D. Belko, K. Delonga, S. Fabek, B. Novak, and N. Toth. 2012. Influence of potassium fertilisation on the levels of phenolic compounds in sweet potato (Ipomoea batatas L.) leaves. Journal of Horticultural Science and Biotechnology 87: 47-51. Rhoades, J. D. 1982. Soluble salts. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. Inc., Publisher, Madison, Wisconsin, USA. pp. 167-178. Rice-Evans, C., N. Miller and G. Paganga. 1997. Antioxidant properties of phenolic compounas. Trends in Plant Science 2: 152-159 Römheld, V., and E. A. Kirkby. 2010. Research on potassium in agriculture: needs and prospects. Plant and Soil 335: 155-180. Samuels, G. 1967. The influence of fertilizer ratios on sweet potato yields and quality. In: Proceedings of the International Symposium on Tropical Root Crops 1: 86-93. Seigler, D. S. 1977. Primary roles for secondary compounds. Biochemical Systematics and Ecology 5: 195-199. Sherwin, E. R. 1978. Oxidation and antioxidants in fat and oil processing. Journal of the American Oil Chemists’ Society 55: 809-814. Soon, Y. K., and S. Abboud. 1991. A comparison of some methods for soil organic carbon determination. Communications in Soil Science & Plant Analysis 22: 943-954. Soriano-Melgar, L. D. A. A., L. Alcaraz-Meléndez, L. C. Méndez-Rodríguez, M. E. Puente, F. Rivera-Cabrera, and T. Zenteno-Savín. 2012. Antioxidant and trace element content of damiana (Turnera diffusa Willd) under wild and cultivated conditions in semi-arid zones. Industrial Crops and Products 37: 321-327. Sperry, J., Z. E. Wilson, D. C. Rathwell, and M. A. Brimble. 2010. Isolation, biological activity and synthesis of benzannulated spiroketal natural products. Natural Product Reports 27: 1117-1137. Suárez, B., N. Palacios, N. Fraga, and R. Rodríguez. 2005. Liquid chromatographic method for quantifying polyphenols in ciders by direct injection. Journal of Chromatography A 1066: 105-110. Sugiharto, B., and T. Sugiyama. 1992. Effects of nitrate and ammonium on gene expression of phosphoenolpyruvate carboxylase and nitrogen metabolism in maize leaf tissue during recovery from nitrogen stress. Plant Physiology 98: 1403-1408. Sugiyama, M., M. Takahashi, T. Katsube, A. Koyama and H. Itamura. 2016. Effects of applied nitrogen amounts on the functional components of Mulberry (Morus alba L.) leaves. Journal of Agricultural and Food Chemistry 64: 6923-6929. Taiz, L., E. Zeiger, I. M. Møller, and A. Murphy. 2015. Plant physiology and development. Sinauer Associates, Incorporated. USA. 700 pp. Tavarini, S., and L. G. Angelini. 2013. Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Journal of the Science of Food and Agriculture 93: 2121-2129. Tavarini, S., C. Sgherri, A. M. Ranieri, and L. G. Angelini. 2015. Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. Journal of Agricultural and Food Chemistry 63: 7041-7050. Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald. 2007. Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21: 1-15 Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 39: 44-84. Wills, R. B., K. Bone, and M. Morgan. 2000. Herbal products: active constituents, modes of action and quality control. Nutrition Research Reviews 13: 47-77. Yamazaki T. 1968. Supplement of the flora of Ryukyu and Formosa. Journal of Japanese Botany 43: 169. Yang, S. B., S. M. Lee, J. H. Park, T. H. Lee, N. I. Baek, H. J. Park, H. Lee, and J. Kim. 2014. Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-κB inactivation. Biological and Pharmaceutical Bulletin 37: 1390-1396. Yue, R., X. Yuan, X. Liu, J. Zhang, P. Jiang, C. He, L. Shan, Y. Yu and W. Zhang. 2012. Cynandione A mitigates ischemic injuries in rats with cerebral ischemia. Journal of Neurochemistry 121: 451-464. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66889 | - |
| dc.description.abstract | 萬能薯 (Cynanchum taiwanianum Yamazaki) 為臺灣原生種藥用植物,主要分布於中部中海拔山區,全株植物皆可入藥及食用,使其具有相當好的經濟價值。早期萬能薯主要用來治療毒蛇咬傷,近二十年來民間常用來治療胃潰瘍、青春痘、肝病、以及高膽固醇等疾病。研究發現萬能薯的主要活性成分為'cynandione A ',其具有免疫調節、抗發炎、抗腫瘤、保肝和神經保護等功效。目前由於缺乏有關萬能薯及其栽培技術的生長基礎資料,使其藥用食材來源不足及品質不穩。本研究目的為利用盆栽及田間試驗進行探討氮肥及鉀肥對萬能薯的生長、多酚類化合物與cynandione A的生合成影響。盆栽試驗使用二種量之氮肥 (100及150 kg N ha-1) 及三種量之鉀肥 (100、150及200 kg K2O ha-1) 組合成六種處理,分別為N1K1、N1K2、N1K3、N2K1、N2K2及N2K3。田間試驗分為氮肥處理組及鉀肥處理組,氮肥處理組共有三種量之氮肥處理 (100、150及200 kg N ha-1),分別為N100、N150及N200;鉀肥處理組共有三種量之鉀肥處理 (100、150及200 kg K2O ha-1),分別為K100、K150及K200。每種處理皆會與未施肥的對照組做比較。結果顯示,盆栽及田間試驗中,施肥後萬能薯地上部與根部之乾重皆高於對照組,但肥料處理組之間並無顯著差異。不同量的氮肥及鉀肥處理組間之地上部與根部之總酚類及總黃酮類濃度無顯著差異,而盆栽試驗之對照組地上部總黃酮類濃度顯著高於其他處理組。地上部阿魏酸的濃度在N1K3處理組顯著最高,其餘多酚類化合物濃度在地上部或是根部的不同處理組之間皆無顯著差異。萬能薯的主要活性成cynandione A只在根部測得。不同量的氮肥及鉀肥處理組間之cynandione A濃度無顯著差異。本研究說明氮肥及鉀肥皆為萬能薯根部發育的重要養分,本試驗之肥料施用量的不同對於萬能薯中機能性成分濃度的影響並無顯著差異,但當氮肥施用量為150 kg N ha-1搭配鉀肥的施用於N : K2O比值小於1時能夠獲得較佳的根部生質量,以及較高的機能性成分含量。 | zh_TW |
| dc.description.abstract | Cynanchum taiwanianum is an indigenous medicinal plants in Taiwan, its whole plant can be harvested for use as medicine and food. Traditionally, C. taiwanianum is used to treat snake bites, however, in recent years it is also popularly used for treating stomach ulcers, acne, liver disease, cholesterol and other diseases. Studies have shown that cynandione A is the main bioactive compound of C. taiwanianum. This compound had been demonstrated to have anti-inflammatory, anti-tumor, hepatoprotective, and neuroprotective. To date, due to the lack of basic information on its growth, and without good cultivation techniques, this has resulted in poor harvest, instable supply and poor quality of this medicinal ingredient. The main aim of this study was to investigate the effects of nitrogen and potassium fertilizers on the growth and the biosynthesis of main bioactive compound (cynandione A) and polyphenolic compounds in pot and field cultivated C. taiwanianum. Pot experiment consisted of two nitrogen rates (100 and 150 kg N ha-1) and three different rates of potassium (100,150 and 200 kg K2O ha-1) to form six different treatments, namely N1K1, N1K2, N1K3, N2K1, N2K2 and N2K3. Field experiment comprised of nitrogen and potassium treatments; nitrogen treatment contained three application rates, including 100, 150 and 200 kg N ha-1, and was named N100, N150 and N200, respectively, whereas potassium treatment contained three application rates, including 100,150 and 200 kg K2O ha-1, and was named K100, K150 and K200, respectively. The results showed that after fertilization treatments, although both shoot and root biomass were higher than the Control, there was no significant difference between fertilization treatments. The total phenolic and total flavonoid concentrations in the shoots and roots of fertilization treatments were not significantly different from each other. The total flavonoid concentrations in the shoot of the Control were significant higher than the fertilization treatments in the pot experiment. In the shoots, the concentration of ferulic acid was the highest in the N1K3 treatment. In the roots, the concentrations of polyphenolic compounds were not significantly different between treatments. Cynandione A was only detected in the roots and was found to have no significant difference between treatments. This study concludes that both nitrogen and potassium fertilizers are important elements for the development of C. taiwanianum roots. The different fertilization treatments showed no obvious effects on the concentrations of functional compounds. However, the combination of 150 kg N ha-1 nitrogen fertilizer and potassium fertilizer in a ratio lower than 1 were shown to be the best condition for the production of root biomass and the contents of functional compounds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:19Z (GMT). No. of bitstreams: 1 ntu-106-R04623020-1.pdf: 4029871 bytes, checksum: 73dcdc73bc50f23858a192ab03efb4f4 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝-I
摘要-III Abstract-IV 目錄-VI 圖目錄-VIII 表目錄-X 第一章前言-1 第二章前人研究-3 一、萬年薯簡介-3 二、植物二次代謝物-3 三、萬能薯之化學成分-4 四、萬年薯之藥理作用-5 五、影響植物二次代謝物生合成因子-7 六、臺灣萬能薯栽培現況-8 第三章材料與方法-11 材料-11 一、試驗時間與地點-11 二、土壤及肥料-11 三、試驗作物-11 方法-12 一、試驗設計與處理-12 二、樣品處理-15 三、土壤分析-15 四、植體分析-19 五、統計分析-23 第四章結果-31 盆栽試驗-31 一、施用肥料對種植萬能薯後之盆栽土壤性質的影響-31 二、不同肥料處理對盆栽萬能薯生長及養分吸收之影響-34 三、不同肥料處理對盆栽萬能薯植體機能性成分含量的影響-41 田間試驗-53 一、施用肥料對種植萬能薯後之田間土壤性質的影響-53 二、不同肥料施用量對田間萬能薯生長及養分吸收之影響-56 三、不同肥料施用量對田間萬能薯植體機能性成分含量的影響-68 第五章討論-82 一、萬能薯栽培後土壤性質的變化-82 二、萬能薯的生長及養分吸收-85 三、萬能薯的機能性成分-87 第六章結論-89 第七章參考文獻-90 附錄-100 | |
| dc.language.iso | zh-TW | |
| dc.subject | cynandione A | zh_TW |
| dc.subject | 萬能薯 | zh_TW |
| dc.subject | 氮肥 | zh_TW |
| dc.subject | 養分吸收 | zh_TW |
| dc.subject | 鉀肥 | zh_TW |
| dc.subject | Cynanchum taiwanianum | en |
| dc.subject | cynandione A | en |
| dc.subject | nutrient condition | en |
| dc.subject | potassium fertilizer | en |
| dc.subject | nitrogen fertilizer | en |
| dc.title | 氮鉀肥不同施用量對萬能薯生長及機能性成分含量之影響 | zh_TW |
| dc.title | Effects of nitrogen and potassium fertilization rates on the growth and contents of functional compounds in Cynanchum taiwanianum | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),黃裕銘(Yu-Ming Huang),陳仁炫(Jen-Hshuan Chen) | |
| dc.subject.keyword | 萬能薯,氮肥,鉀肥,養分吸收,cynandione A, | zh_TW |
| dc.subject.keyword | Cynanchum taiwanianum,nitrogen fertilizer,potassium fertilizer,nutrient condition,cynandione A, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201702911 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
