請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66887完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李水盛(Shoei-Sheng Lee) | |
| dc.contributor.author | Shu-Ruei Bai | en |
| dc.contributor.author | 白書睿 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:14:17Z | - |
| dc.date.available | 2020-08-15 | |
| dc.date.copyright | 2017-09-13 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | 1. Hollman, P. C. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol. 2004, 42, 74–83.
2. Jiang, C. L.; Tsai, S. F.; Lee, S. S. Flavonoids from Curcuma longa leaves and their NMR assignments. Nat. Prod. Commun. 2015, 10, 63–66. 3. Németh, K.; Plumb, G. W.; Berrin, J. G.; Juge, N.; Jacob, R.; Naim, H. Y.; Williamson, G.; Swallow, D. M.; Kroon, P. A. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42. 4. Lai, R. S.; Chiang, A. A.; Wu, M. T.; Wang, J. S.; Lai, N. S.; Lu, J. Y.; Ger, L. P.; Roggli, V. Outbreak of bronchiolitis obliterans associated with consumption of Sauropus androgynus in Taiwan. Lancet 1996, 348, 83–85. 5. Lin, T. J.; Lu, C. C.; Chen, K. W.; Deng, J. F. Outbreak of obstructive ventilatory impairment associated with consumption of Sauropus androgynus vegetable. J. Toxicol. Clin. Toxicol. 1996, 34, 1–8. 6. Wang, P. H.; Lee, S. S. Active chemical constituents from Sauropus androgynus. J. Chin. Chem. Soc. 1997, 44, 145–149. 7. Yu, S. F.; Shun, C. T.; Chen, T. M.; Chen, Y. H. 3-O-β-D-Glucosyl-(1→6)- β-D-glucosyl-kaempferol isolated from Sauropus androgynus reduces body weight gain in Wistar rats. Biol. Pharm. Bull. 2006, 29, 2510–2513. 8. van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug. Discov. 2003, 2, 192–204. 9. Correia, M. A.; Drug biotransformation. In: Basic and clinical pharmacology; 13th Edition; Katzung, B. G.; Trevor, A. J., Eds; McGraw-Hill Education; San Francisco, CA; 2015; Chapter 4. Available at: http://accessmedicine.mhmedical.com/content.aspx?bookid=1193§ionid=69104088 (accessed June 12, 2017). 10. Drug metabolism & Prodrugs and drug delivery systems. In: The organic chemistry of drug design and drug action; 3rd Edition; Silverman, R. B.; Holladay, M. W., Eds.; Elsevier Inc.; San Diego, CA & Waltham, MA; 2014; Chapters 8 & 9. 11. Williams, D. A. Drug metabolism. In: Foye’s principles of medicinal chemistry; 7th Edition; Lemke, T. L.; Williams, D. A. Eds.; Lippincott Williams & Wilkins, a Wolters Kluwer business; Baltimore, MD & Philadelphia, PA; 2013; Chapter 5. 12. Metabolic stability method. In: Drug-like properties: Concepts, structure design and methods, from ADME to toxicity optimization; 1st Edition; Kerns, E. H.; Di, L. Eds.; Elsevier Inc.; Burlington, MA & San Diego, CA; 2008; Chapter 29. 13. Zhang, D. Z.; Luo, G.; Ding, X. X.; Lu, C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm. Sin. B 2012, 2, 549–561. 14. Spectrophotometry: instruments and application. In: Exploring chemical analysis; 5th Edition; Harris, D. C. Eds.; W. H. Freeman and Company; New York; 2013; Chapter 19. 15. Mass spectrometry & Proton NMR spectrometry. In: Spectrometric identification of organic compounds; 8th Edition; Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Bryce, D. L. Eds.; Wiley; Hoboken, NJ; 2014; Chapters 1 & 3. 16. Griffiths, W. J.; Wang, Y. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem. Soc. Rev. 2009, 38, 1882–1896. 17. Wooding, K. M.; Auchus, R. J. Mass spectrometry theory and application to adrenal diseases. Mol. Cell Endocrinol. 2013, 371, 201–207. 18. Kovacs, H.; Moskau, D.; Spraul, M. Cryogenically cooled probes—a leap in NMR technology. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46, 131–155. 19. Chang, C. C.; Lee, S. S. Application of HPLC-SPE-NMR in characterization of bioactive natural compounds. In: Instrumental methods for the analysis and identification of bioactive molecules; Jayprakasha et al. Eds.; ACS Symposium Series 1185; American Chemical Society: Washington, D.C., 2014; pp 217–239. 20. Crozier, A.; Jaganath, I. B.; Clifford, M. N. Phenols, polyphenols and tannins: an overview. Donovan, J. L.; Manach, C.; Faulks, R. M.; Kroon, P. A. Absorption and metabolism of dietary plant secondary metabolites. In: Plant secondary metabolites: occurrence, structure and role in the human diet; 1st Edition; Crozier A.; Clifford, M. N.; Ashihara, H. Eds.; Blackwell; Oxford, UK & Ames, IA; 2006; pp. 1–24, 303–352.; Chapters 1 & 8. 21. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J. P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox. Signal. 2013, 18, 1818–1892. 22. The shikimate pathway: aromatic amino acids and phenylpropanoids. In: Medicinal natural products: a biosynthetic approach; 3rd Edition; Dewick, P. M. Eds.; John Wiley & Sons, Ltd.; Chichester, UK; 2009.; Chapter 4. 23. Ehrenkranz, J. R.; Lewis, N. G.; Kahn, C. R.; Roth, J. Phlorizin: a review. Diabetes Metab. Res. Rev. 2005, 21, 31–38. 24. Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N. et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2008, 51, 1145–1149. 25. de Rijke, E.; Out, P.; Niessen, W. M.; Ariese, F.; Gooijer, C.; Brinkman, U. A. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. 26. Abad-García, B.; Berrueta, L. A.; Garmón-Lobato, S.; Gallo, B.; Vicente, F. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. J. Chromatogr. A 2009, 1216, 5398–5415. 27. Day, A. J.; Bao, Y.; Morgan, M. R.; Williamson, G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic. Biol. Med. 2000, 29, 1234–1243. 28. Fabre N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. 29. Alberti-Dér, Á. LC-ESI-MS/MS methods in profiling of flavonoid glycosides and phenolic acids in traditional medicinal plants: Sempervivum tectorum L. and Corylus avellana L. Ph.D. Dissertation, Semmelweis University, Hungary, 2013. 30. Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. 31. Ablajan, K.; Abliz, Z.; Shang, X. Y.; He, J. M.; Zhang, R. P.; Shi, J. G. Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom.2006, 41, 352–360. 32. Markham, K. R. 13C NMR of flavonoids—II: Flavonoids other then flavone and flavonol aglycones. Tetrahedron 1976, 32, 2607–2612. 33. Mouffok, S.; Haba, H.; Lavaud, C.; Long, C.; Benkhaled, M. Chemical constituents of Centaurea omphalotricha Coss. & Durieu ex Batt. & Trab. Rec. Nat. Prod. 2012, 6, 292–295. 34. Huang, A. C.; Wilde, A.; Ebmeyer, J.; Skouroumounis, G. K.; Taylor, D. K. Examination of the phenolic profile and antioxidant activity of the leaves of the Australian native plant Smilax glyciphylla. J. Nat. Prod. 2013, 76, 1930–1936. 35. Heim, K. E.; Tagliaferro, A. R.; Bobilya, D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. 36. Mullen, W.; Edwards, C. A.; Crozier, A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 2006, 96, 107–116. 37. Mullen, W.; Graf, B. A.; Caldwell, S. T.; Hartley, R. C.; Duthie, G. G.; Edwards, C. A.; Lean, M. E.; Crozier, A. Determination of flavonol metabolites in plasma and tissues of rats by HPLC−radiocounting and tandem mass spectrometry following oral ingestion of [2-14C]quercetin-4'-glucoside. J. Agric. Food Chem. 2002, 50, 6902–6909. 38. Carbonaro, M.; Grant, G. Absorption of quercetin and rutin in rat small intestine. Ann. Nutr. Metab. 2005, 49, 178–182. 39. Arts, I. C.; Sesink, A. L.; Faassen-Peters, M.; Hollman, P. C. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr. 2004, 91, 841–847. 40. Morand, C.; Manach, C.; Crespy, V.; Remesy, C. Quercetin 3-O-β-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic. Res. 2000, 33, 667–676. 41. Manach, C.; Morand, C.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Bioavailability of rutin and quercetin in rats. FEBS Lett. 1997, 409, 12–16. 42. Hollman, P. C.; Bijsman, M. N.; van Gameren, Y.; Cnossen, E. P.; de Vries, J. H.; Katan, M. B. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 1999, 31, 569–573. 43. Aura, A. M.; Martin-Lopez, P.; O’Leary, K. A.; Williamson, G.; Oksman-Caldentey, K. M.; Poutanen, K.; Santos-Buelga, C. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 2005, 44, 133–142. 44. Jaganath, I. B.; Mullen, W.; Edwards, C. A.; Crozier, A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic. Res. 2006, 40, 1035–1046. 45. Amaretti, A.; Raimondi, S.; Leonardi, A.; Quartieri, A.; Rossi, M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 2015, 7, 2788–2800. 46. Manach, C.; Texier, O.; Régérat, F.; Agullo, G.; Demigné, C.; Rémésy, C. Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J. Nutr. Biochem. 1996, 7, 375–380. 47. Guo, J.; Meng, F.; Ren, Z.; Zhao, Y. Pharmacokinetics and tissue distribution of a water-soluble flavonol triglycoside, CTN986, in mice. Planta Med. 2008, 74, 228–232. 48. Jin, H.; Chen, G.; Li, X.; Shen, Y.; Yan, S.; Zhang, L.; Yang, M.; Zhang, W. Flavonoids from Rhododendron decorum. Chem. Nat. Compd. 2009, 45, 85–86. 49. Vieira, M. N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. 50. Lin, Y. L. Chemical investigation of Hyptis suaveolens guided by xanthine oxidase inhibitory activity and proanthocyanidins from peanut skin. Master Thesis, National Taiwan University, Taiwan, June 2016. 51. Sevindik, H. G.; Güvenalp, Z.; Yerdelen, K. Ö.; Yuca, H.; Demirezer, L. Ö. Research on drug candidate anticholinesterase molecules from Achillea biebersteinii Afan. using by molecular docking and in vitro methods. Med. Chem. Res. 2015, 24, 3794–3802. 52. Furusawa, M.; Tanaka, T.; Ito, T.; Nakaya, K.; Iliya, I.; Ohyama, M.; Iinuma, M.; Murata, H.; Inatomi, Y.; Inada, A.; Nakanishi, T.; Matsushita, S.; Kubota, Y.; Sawa, R.; Takahashi, Y. Flavonol glycosides in leaves of two Diospyros species. Chem. Pharm. Bull. 2005, 53, 591–593. 53. Yamauchi, K.; Mitsunaga, T.; Itakura, Y.; Batubara, I. Extracellular melanogenesis inhibitory activity and the structure-activity relationships of ugonins from Helminthostachys zeylanica roots. Fitoterapia 2015, 104, 69–74. 54. Noreen, H.; Farman, M.; McCullagh, J. S. Bioassay-guided isolation of cytotoxic flavonoids from aerial parts of Coronopus didymus. J. Ethnopharmacol. 2016, 194, 971–980. 55. Li, L.; Henry G. E.; Seeram, N. P. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J. Agric. Food Chem. 2009, 57, 7282–7287. 56. Orhan, F.; Çeker, S.; Anar, M.; Agar, G.; Arasoglu, T.; Gulluce, M. Protective effects of three luteolin derivatives on aflatoxin B1-induced genotoxicity on human blood cells. Med. Chem. Res. 2016, 25, 2567–2577. 57. Numonov, S. R.; Usmanova, S. K.; Aisa, H. A. Chemical composition of Dracocephalum heterophyllum. Chem. Nat. Compd. 2013, 49, 511–513. 58. Kim, S. J.; Cho, H. I.; Kim, S. J.; Park, J. H.; Kim, J. S.; Kim, Y. H.; Lee, S. K.; Kwak, J. H.; Lee, S. M. Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure. Eur. J. Pharmacol. 2014, 738, 66–73. 59. Abu-Gharbieh, E.; Shehab, N. G. Therapeutic potentials of Crataegus azarolus var. eu-azarolus Maire leaves and its isolated compounds. BMC Complement. Altern. Med. 2017, 17, 218. 60. Nguyen, P.; Zhao, B. T.; Lee, J. H.; Kim, Y. H.; Min, B. S.; Woo, M. H. Antithrombotic phenolics from the stems of Parthenocissus tricuspidata possess anti-inflammatory effect. Bull. Korean Chem. Soc. 2014, 35, 1763–1768. 61. Ho, H. M.; Chen, R. Y.; Leung, L. K.; Chan, F. L.; Huang, Y.; Chen, Z. Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother. 2002, 56, 289–295. 62. Sando, C. E.; Bartlett, H. H. Pigments of the mendelian color types in maize: isoquercitrin from brown-husked maize. J. Biol. Chem. 1922, 54, 629–654. 63. Sando, C. E.; Milner, R. T.; Sherman, M. S. Pigments of the mendelian color types in maize: chrysanthemin from purple-husked maize. J. Biol. Chem. 1935, 109, 203–211. 64. Casas, M. I.; Duarte, S.; Doseff, A. I.; Grotewold, E. Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop. Front. Plant Sci. 2014, 5, 440. 65. Ninfali, P.; Antonini, E.; Frati, A.; Scarpa, E. S. C-glycosyl flavonoids from Beta vulgaris cicla and betalains from Beta vulgaris rubra: antioxidant, anticancer and antiinflammatory activities—a review. Phytother. Res. 2017, 31, 871–884. 66. Peterson, D. M. Oat antioxidants. J. Cereal Sci. 2001, 33, 115–129. 67. Stochmal, A.; Piacente, S.; Pizza, C.; De Riccardis, F.; Leitz, R.; Oleszek, W. Alfalfa (Medicago sativa L.) flavonoids. 1. Apigenin and luteolin glycosides from aerial parts. J. Agric. Food Chem. 2001, 49, 753–758. 68. Stochmal, A.; Simonet A. M.; Macias, F. A.; Oleszek, W. Alfalfa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem. 2001, 49, 5310–5314. 69. Asenstorfer, R. E.; Wang, Y.; Mares, D. J. Chemical structure of flavonoid compounds in wheat (Triticum aestivum L.) flour that contribute to the yellow colour of Asian alkaline noodles. J. Cereal Sci. 2006, 43, 108–119. 70. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. 71. Kukovinets, O. S.; Yamansarova, E. T.; Kasradze, V. G.; Lozhkina, E. A.; Zainullin, R. A.; Abdullin, M. I. Synthesis of biologically active substances based on phenoxyethanol derivatives. Russ. J. Org. Chem. 2005, 41, 673–677. 72. Kusukawa, T.; Inoue, K.; Obata, H.; Mura, R. Dicarboxylic acid recognition of 1,8-bis(N,N'-diethylamidino)anthracene : NMR, X-ray, ESI-mass and fluorescence analyses of dicarboxylic acid binding complexes. Tetrahedron 2017, 73, 661–670. 73. Camelio, A. M.; Liang, Y.; Eliasen, A. M.; Johnson, T. C.; Yuan, C.; Schuppe A. W.; Houk, K. N.; Siegel, D. Computational and experimental studies of phthaloyl peroxide-mediated hydroxylation of arenes yield a more reactive derivative, 4,5-dichlorophthaloyl peroxide. J. Org. Chem. 2015, 80, 8084–8095. 74. Kohri, T.; Suzuki, M.; Nanjo, F. Identification of metabolites of (-)-epicatechin gallate and their metabolic fate in rat. J. Agric. Food Chem. 2003, 51, 5561–5566. 75. Zhao, N.; Yang, G.; Zhang, Y.; Chen, L.; Chen, Y. A new 9,10- dihydrophenanthrene from Dendrobium moniliforme. Nat. Prod. Res. 2016, 30, 174–179. 76. Lavoie, S.; Legault, J.; Simard, F.; Chiasson, É.; Pichette, A. New antibacterial dihydrochalcone deri vatives from buds of Populus balsamifera. Tetrahedron Lett. 2013, 54, 1631–1633. 77. Hong, S. S.; Choi, C. W.; Choi, Y. H.; Oh, J. S. Coixlachryside A: a new lignan glycoside from the roots of Coix lachryma-jobi L. var. ma-yuen Stapf. Phytochem. Lett. 2016, 17, 152–157. 78. Prachayasittikul, S.; Suphapong, S.; Worachartcheewan, A.; Lawung, R.; Ruchirawat, S.; Prachayasittikul, V. Bioactive metabolites from Spilanthes acmella Murr. Molecules 2009, 14, 850–867. 79. Gessner, T.; Jacknowitz, A.; Vollmer, C. A. Studies of mammalian glucose conjugation. Biochem. J. 1973, 132, 249–258. 80. Matern, H.; Matern, S.; Gerok, W. Formation of bile acid glucosides by a sugar nucleotide-independent glucosyltransferase isolated from human liver microsomes. Proc. Natl. Acad. Sci. USA 1984, 81, 7036–7040. 81. Wong, K. P. Formation of bilirubin glucoside. Biochem. J. 1971, 125, 929–934. 82. Collins, D. C.; Williamson, D. G.; Layne, D. S. Steroid glucosides. Enzymatic synthesis by a partially purified transferase from rabbit liver microsomes. J. Biol. Chem. 1970, 245, 873–876. 83. Rao, K. V.; Weisner, N. T. Microbial transformation of quercetin by Bacillus cereus. Appl. Environ. Microbiol. 1981, 42, 450–452. 84. Das, S.; Rosazza, J. P. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 2006, 69, 499–508. 85. Ibrahim, A. R.; Galal, A. M.; Mossa, J. S.; El-Feraly, F. S. Glucose-conjugation of the flavones of Psiadia arabica by Cunninghamella elegans. Phytochemistry 1997, 46, 1193–1195. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66887 | - |
| dc.description.abstract | 含鼠李糖之黃酮醇苷廣佈於植物界,其中芸香苷已被廣泛報導具多種生物活性,但這類化合物在體內之代謝仍鮮有報告。研究顯示薑黃(Curcuma longa L.)地上部及守宮木(Sauropus androgynus (L.) Merr.)具有這類成分,守宮木的新鮮汁液曾被使用於減重,曾於1995年台灣造成23例之阻塞性細支氣管炎(bronchiolitis obliterans),據研究其成因可能與這類成分有關,因此本研究擬探討其體內吸收與代謝物,以供釐清這些副作用機制之用。
本實驗從薑黃地上部正丁醇可溶部分,藉已建立之分離方法,使用凝膠管柱層析及逆相管柱層析,得到五個各近200 mg的含鼠李糖槲皮素苷:quercetin 3-O- α-L-rhamnosyl-(1→2)-[α-L-rhamnosyl-(1→6)]-β-D-galactoside (2)、quercetin 3-O- [α-L-rhamnosyl-(1→2)]-β-D-galactoside (3)、quercetin 3-O-[α-L-rhamnosyl-(1→2)]-α-L-rhamnoside (7)、quercetin 3-O-α-L-rhamnoside (8)、quercetin 3-O-[α-L-rhamnosyl- (1→2)]-β-D-glucuronide (11)。這五個成分連同地上部水煎萃取物及正丁醇可溶部分,分別進行大鼠胃內灌食,以代謝籠分別收集48小時之糞便與尿液,經液相-液相分配、凝膠管柱及逆相管柱層析集中代謝物,並利用液相層析-質譜儀(LC-MS)及液相層析-固相萃取-微樣細管轉移-核磁共振儀(LC-SPE-TT-NMR)技術,與未餵食樣品之控制組糞便及尿液比對以鑑定代謝物。液相層析分析發現餵食2 及7之糞便含有較多代謝物,與文獻報導槲皮素主要經肝膽排除相符。本實驗於2組糞便樣品中鑑定4個代謝物(M1–M4)、7組尿液樣品中鑑定2個代謝物(M5及M6)及糞便樣品中鑑定6個代謝物(M7–M12)。其中,以LC-SPE-TT-NMR共鑑定10個代謝物(M1–M10),以LC-MS推定2個代謝物(M11–M12)。 三醣苷2組糞便樣品中鑑定之醣苷鍵部分水解代謝物(M1及M4),顯示其可能經腸道菌叢去除醣基,然而M2及M3為黃酮(flavones)應非源自黃酮醇苷2,疑來自飼料成分。雙醣苷7組尿液樣品中發現疑內生性之脂肪酸類代謝物M5及M6,而於糞便樣品分離原形藥(7) 8.4 mg (回復率為4.8%),並發現小分子芳香性代謝物M7–M9,後者顯示黃酮醇苷可能經phase I之環斷裂(ring fission)代謝。此外,於7組糞便樣品中鑑定到的M10,屬葡萄糖接合之代謝物,此代謝路徑僅有少數報導,且該葡萄糖基接在Rha 2-OH而非酚基此現象尚屬首見。另又以LC-MS發現與黃酮醇有紫外光吸收相符之代謝物M11及M12,經與原形藥7的分子離子峰比對,推測M11屬葡萄醣醛酸接合代謝物,而M12則為去酚基及甲基化代謝物。 動物實驗期間觀察到一大鼠呼吸有聲且體重有減輕之現象,此與守宮木造成之副作用相似,唯仍需進一步進行病理檢驗確認。 | zh_TW |
| dc.description.abstract | Rhamnosyl containing flavonol glycosides are widely distributed in the plant kingdom. Among them, rutin has been comprehensively studied including versatile bioactivities. The metabolic study, especially the metabolite identification of such group, however, is rarely reported. The aerial part of Curcuma longa L. and Sauropus androgynus (L.) Merr. have been reported to be rich in such flavonols rhamnoside. Ground juice from fresh S. androgynus was used as a diet for weight loss. In Taiwan, outbreak of 23-case bronchiolitis obliterans in 1995 after chronic digest of the juice and later on research indicated that flavonol rhamnosides might cause the pulmonary toxicity. Hence, this study was aimed to investigate the metabolites of this type compounds for further clarification of their potential side effect.
Following the developed procedure, five quercetin rhamnosides with amount around 200 mg were isolated from the n-BuOH-soluble fraction of C. longa. These five compounds are quercetin 3-O– α-L-rhamnosyl-(1→2)-[α-L-rhamnosyl-(1→6)]-β-D- galactoside (2), -[α-L-rhamnosyl-(1→2)]-β-D-galactoside (3), -[α-L-rhamnosyl-(1→2)]-α-L-rhamnoside (7), -α-L-rhamnoside (8), and -[α-L-rhamnosyl-(1→2)]-β-D- glucuronide (11). Along with the water extract and n-BuOH-soluble fraction, they were administered individually to four rats in metabolic cages via gavage, and both urine and feces were collected with a period of 48 hours. Metabolites in both samples were focused by liquid-liquid partitioning, gel filtration, and reverse-phase chromatography in sequence. The metabolites were picked up via comparison of the HPLC profile of the treated and the control group. Hyphenation techniques, including LC-MS and LC-SPE-TT-NMR, were applied for metabolite identification. HPLC analysis indicated the feces samples, obtained from the 2 and 7 groups, to contain more metabolites in accordance with the previous reports that quercetin rhamnoside excreted predominantly through biliary duct. Metabolites M1–M4 were identified from the feces sample of the 2-treated group. Two (M5 & M6) and six metabolites (M7–M12) were identified from urine and feces sample of the 7-treated group, respectively. Of those, M1–M10 were identified by LC-SPE-TT-NMR and M11 & M12 by LC-MS. In the trioside 2-treated feces sample, partial hydrolysis of the glycosidic bond led to the corresponding metabolite M1 and M4, indicating that gut microflora might involve in deglycosylation. The identified flavone metabolites M2 and M3 are apparently not derived from 2 but from the fodder. In the dioside 7-treated urines, two endogenous fatty acid metabolites, M5 and M6, were identified. In 7-treated feces, however, the parent compound 7, up to 4.8% recovery, and simple aromatic metabolites, M7–M9, were identified. The latter three indicates that phase I biotransformation like ring fission may play a role in the metabolism of flavonol glycosides. Glucose conjugated metabolite M10 was identified from the 7-treated feces sample. Such conjugation was rarely reported. In addition, this is the first report that such conjugation occurs at Rha 2-OH rather than the phenolic group. Analysis of the MS of the LC-peaks with UV absorption consistent with flavonols led to the identification of M11 and M12. By comparing the m/z values with the parent 7, M11 was elucidated as a glucuronide conjugated 7 while M12 as a mono-dephenolated and mono-O-methylated 7. During the animal experiment of the 7 group, a rat suffering wheezes and body weight decrease, similar to those happened in S. androgynous incidence, was observed. Further pathological examination is required to clarify whether rhamnosyl containing flavonol glycosides could cause these symptoms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:17Z (GMT). No. of bitstreams: 1 ntu-106-R04423029-1.pdf: 8093960 bytes, checksum: b81d91d1bdafa2b2fdaee19a4d85427f (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要(Abstract) iii 總目錄(Contents) v 圖目錄(List of Figures) ix 表目錄(List of Tables) xii 流程圖目錄(List of Schemes) xv 附圖目錄(List of Supporting Figures) xvii 專有名詞縮寫(Abbreviations of Terminology) xix 研究目的(Aim of the Study) xx 1. 緒論 1 1.1. 藥物代謝 1 1.2. 研究藥物代謝的方法 8 1.2.1. 樣品準備 8 1.2.2. 代謝物之分離 9 1.2.3. 代謝物之鑑定 9 1.2.3.1. 高效液相層析–二極體陣列偵測器(HPLC-DAD) 9 1.2.3.2. 質譜儀(Mass spectrometer) 10 1.2.3.3. 核磁共振儀(Nuclear magnetic resonance spectrometer, NMR) 12 1.2.4. 定量實驗 15 1.3. 類黃酮 17 1.3.1. 類黃酮的分類、生合成與藥物開發例子 17 1.3.2. 類黃酮的紫外光譜(UV spectroscopy) 19 1.3.3. 類黃酮的質譜(Mass spectrometry) 20 1.3.4. 類黃酮的核磁共振圖譜(NMR spectroscopy) 23 1.4. 黃酮醇苷的代謝研究 25 2. 實驗部分 29 2.1. 儀器與材料 29 2.1.1. 理化性質測定儀器 29 2.1.2. 成分分離之儀器與材料 29 2.1.3. 試藥與溶劑 31 2.1.4. 薄層層析展開系統 31 2.2. 含鼠李糖之黃酮醇苷的樣品準備 32 2.2.1. 植物來源 32 2.2.2. 薑黃地上部之水煎萃取物 32 2.2.3. 薑黃地上部正丁醇可溶部分 32 2.2.3.1. 乙醇萃取 32 2.2.3.2. 液相-液相分配 33 2.2.4. 含鼠李糖之黃酮醇苷 34 2.2.4.1. 聚葡萄糖凝膠管柱層析(Sephadex LH-20 C. C.) 34 2.2.4.2. 化合物2和3之分離 35 2.2.4.3. 化合物3、7、11及14–17之分離 36 2.2.4.4. 化合物8、11和13之分離 38 2.2.4.5. 化合物結構及總分離量 39 2.3. 動物實驗模式 40 2.3.1. 實驗動物 40 2.3.2. 樣品溶解度測試 40 2.3.3. 樣品配製、給藥與收集代謝物 41 2.3.3.1. 實驗設計 41 2.3.3.2. 樣品配製與給藥 41 2.3.3.3. 收集代謝物 42 2.3.4. 觀察 42 2.4. 代謝物的分離 43 2.4.1. 尿液前處理 43 2.4.2. 尿液樣品之HPLC-DAD-ESI-MS分析 46 2.4.3. 糞便前處理 48 2.4.4. 糞便樣品之HPLC-DAD分析 48 2.5. 三醣黃酮醇苷2的代謝物分析 52 2.6. 雙醣黃酮醇苷7的代謝物分析 54 2.6.1. 尿液中代謝物 54 2.6.2. 糞便中代謝物 56 3. 實驗結果與討論 59 3.1. 含鼠李糖之黃酮醇苷樣品 59 3.1.1. Quercetin 3-O-α-L-rhamnosyl-(1→2)-[α-L-rhamnosyl-(1→6)]-β-D- galactoside (2) 59 3.1.2. Quercetin 3-O-[α-L-rhamnosyl-(1→2)]-β-D-galactoside (3) 61 3.1.3. Quercetin 3-O-[α-L-rhamnosyl-(1→2)]-α-L-rhamnoside (7) 63 3.1.4. Quercetin 3-O-α-L-rhamnoside (8) 65 3.1.5. Quercetin 3-O-[α-L-rhamnosyl-(1→2)]-β-D-glucuronide (11) 67 3.2. 其他化合物 69 3.2.1. Adenosine (13) 69 3.2.2. Caffeic acid (14) 70 3.2.3. Methyl quercetin 3-O-[α-L-rhamnosyl-(1→2)]-β-D-glucuronate (15) 71 3.2.4. Quercetin 3-O-α-L-rhamnosyl-7-O-β-D-glucoside (16) 73 3.2.5. Kaempferol 3-O-[α-L-rhamnosyl-(1→2)]-β-D-glucuronide (17) 76 3.3. 三醣黃酮醇苷2的代謝物 78 3.3.1. 部分水解代謝物(M1及M4) 78 3.3.2. 疑源自飼料之代謝物(M2及M3) 80 3.4. 雙醣黃酮醇苷7的代謝物 88 3.4.1. 經尿液排除之代謝物(M5及M6) 88 3.4.2. 經糞便排除之代謝物((M7–M12) 90 3.4.2.1. 3-(3-Hydroxyphenyl)-propanoic acid (M8) 91 3.4.2.2. p-Coumaric acid (M7)及trans-ferulic acid (M9) 92 3.4.2.3. Quercetin 3-O-[β-D-glucosyl-(1→2)-α-L-rhamnosyl-(1→2)]- α-L-rhamnoside (M10) 94 3.4.2.4. HPLC-DAD-ESI-MS鑑定之其他代謝物(M11及M12) 97 3.5. 結論 100 參考文獻 (References) 102 附圖 112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 黃酮醇? | zh_TW |
| dc.subject | 鼠李糖 | zh_TW |
| dc.subject | 阻塞性細支氣管炎 | zh_TW |
| dc.subject | 減重 | zh_TW |
| dc.subject | 葡萄糖接合 | zh_TW |
| dc.subject | 環斷裂 | zh_TW |
| dc.subject | Flavonol glycoside | en |
| dc.subject | Rhamnosyl moiety | en |
| dc.subject | Bronchiolitis obliterans | en |
| dc.subject | Weight loss | en |
| dc.subject | Glucose conjugation | en |
| dc.subject | Ring fission | en |
| dc.title | 含鼠李糖之黃酮醇苷在大鼠之代謝研究 | zh_TW |
| dc.title | Metabolic study on flavonol glycosides containing rhamnosyl moiety in rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳益昇(Ih-Sheng Chen),林雲蓮(Yun-Lian Lin),李安榮(An-Rong Lee) | |
| dc.subject.keyword | 黃酮醇?,鼠李糖,阻塞性細支氣管炎,減重,葡萄糖接合,環斷裂, | zh_TW |
| dc.subject.keyword | Flavonol glycoside,Rhamnosyl moiety,Bronchiolitis obliterans,Weight loss,Glucose conjugation,Ring fission, | en |
| dc.relation.page | 139 | |
| dc.identifier.doi | 10.6342/NTU201701616 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 7.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
