請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66874
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋孔彬 | |
dc.contributor.author | Hsin-Jou Shen | en |
dc.contributor.author | 沈心柔 | zh_TW |
dc.date.accessioned | 2021-06-17T01:10:03Z | - |
dc.date.available | 2020-02-04 | |
dc.date.copyright | 2020-02-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-16 | |
dc.identifier.citation | 1. 行政院-衛生署- 統計處 - 衛生福利部, “106年主要死因統計結果分析.” 2018“104 年癌症登記報告.” 2016
2. FIGO(International Federation of Gynecology and Obstetrics),”Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium”, 2009 3. Semenza, G.L., “Targeting HIF-1 for cancer therapy. Nature Reviews Cancer,” 2003. 3(10): p.721-732 4. Kar, G., A. Gursoy, and O. Keskin, Human Cancer Protein-Protein Interaction Network: A Structural Perspective. PLoS Comput Biol, 2009. 5(12): p. e1000601 5. 黃贊學, “利用移動式漫反射光譜系統定量子宮頸癌前病變之組織光學參數.” 臺灣大學生醫電子與資訊學研究所碩士學位論文 2017 臺灣大學. 6. Henyey, L.G. and J.L. Greenstein, Diffuse radiation in the galaxy. The Astrophysical Journal, 1941. 93: p. 70-83. 7. Katherine W. Calabro, Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations. Journal of Biomedical Optics 19(7), 075005 (July 2014) 8. Alwin Kienle, Florian K. Forster, and Raimund Hibst, Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance, October 15, 2001 / Vol. 26, No. 20 / OPTICS LETTERS 9. Dizem Arifler, Light Scattering from Collagen Fiber Networks: Micro-Optical Properties of Normal and Neoplastic Stroma, Biophysical Journal Volume 92 May 2007 10. http://www.cancer.ca/en/cancer-information/cancer-type/cervical/cervical-cancer/precancerous-cond itions/?region=bc 11. Cotran, Ramzi S., and Vinay Kumar. Robbins “pathologic basis of disease. 5th ed”. Frederick J. Schoen. Saunders, 1994. 12. https://www.cancer.gov/types/cervical/understanding-cervical-changes 13. N. Subhash, J.R. Mallia, S.S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540∕R575 of oxygenated hemoglobin bands.” J. Biomed Opt., vol. 11, no. 1, pp. 14-18, 2006. 14. Glennie, Diana L., et al. “Inexpensive diffuse reflectance spectroscopy system for measuring changes in tissue optical properties.” Journal of biomedical optics 19.10 (2014) 15. Tabrizi, Sanaz Hariri, et al. “The use of optical spectroscopy for in vivo detection of cervical pre-cancer.” Lasers in medical science 29.2 (2014): 831-845. 16. Farrell, Thomas J.. 'A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo.' 1992 17. Wang, Lihong, Steven L. 'MCML—Monte Carlo modeling of light transport in multi-layered tissues.' Computer methods and programs in biomedicine 47.2 (1995): 131-146. 18. Liu, Q. and N. Ramanujam, Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied optics, 2006. 45(19): p. 4776-4790. 19. Hennessy, R., et al., Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy. Journal of biomedical optics, 2014. 19(10): p. 107002-107002. 20. Meglinski, I.V. and S.J. Matcher, Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiological measurement, 2002. 23(4): p. 741. 21. Jacques, S., C. Alter, and S.A. Prahl, Angular dependence of HeNe laser light scattering by human dermis. Lasers in the Life Sciences, 1988. 2(4): p. 309-333. 22. Arifler, D., et al., Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition. Journal of biomedical optics, 2003. 8(3): p. 484-494. 23. Drezek, Rebekah, et al. 'Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture.' Journal of biomedical optics 8.1 (2003): 7-16. 24. Arifler, Dizem, et al. 'Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition.' Journal of biomedical optics 8.3 (2003): 484-494. 25. Collier, Tom, et al. 'Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy.' Applied optics 44.11 (2005): 2072-2081. 26. Feldchtein, Felix I., et al. 'In vivo OCT imaging of hard and soft tissue of the oral cavity.' Optics express 3.6 (1998): 239-250. 27. Clark, Anne L., et al. 'Detection and diagnosis of oral neoplasia with an optical coherence microscope.' Journal of biomedical optics 9.6 (2004): 1271-1280. 28. Lee, Cheng-Kuang, et al. 'Diagnosis of oral precancer with optical coherence tomography.' Biomedical optics express 3.7 (2012): 1632-1646. 29. Chang, Vivide Tuan-Chyan, et al. 'Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix.' Journal of biomedical optics 15.5 (2010): 057006-057006. 30. Arifler, Dizem, et al. 'Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma.' Biophysical journal 92.9 (2007): 3260-3274. 31. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990). 32. José L. Arce-Diego, Félix Fanjul-Vélez, Alfonso Borragán- Torre , “Study of the thermal distribution in vocal cords irradiated by an optical source for the treatment of voice disabilities “, SPIE BiOS, 2006 33. Nieman, Linda Tae, “Early detection of curable precancerous lesions in the oral cavity using polarized reflectance spectroscopy”, The University of Texas at Austin December, 2004 34. R. Graaff, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32(2), 244 (1993). 35. A. Kienle, F. K. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spa- tially resolved reflectance,” Opt. Lett. 26(20), 1571–1573 (2001). 36. J. R. Mourant et al., “Influence of the scattering phase function on light transport measurements in turbid media performed with small source– detector separations,” Opt. Lett. 21(7), 546–548 (1996). 37. F. Bevilacqua et al., “In vivo local determination of tissue optical pro- perties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999). 38. F.BevilacquaandC.Depeursinge,“Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999). 39. Qu, Jianan, et al. 'Optical properties of normal and carcinomatous bronchial tissue.' Applied optics 33.31 (1994): 7397-7405. 40. 莊閔傑, “臨床移動式漫反射光譜系統之建構與實測.” 臺灣大學生醫電子與資訊學研究所碩士學位論文 2015 臺灣大學. 41. Christopher M. Bishop,” Neural Networks for Pattern Recognition” Oxford University Press, Inc. New York, NY, USA ©1995 42. JONATHAN BARZILAI, JONATHAN M. BORWEIN, “Two-Point Step Size Gradient Methods”, IMA Journal of Numerical Analysis, Volume 8, Issue 1, January 1988 43. Philippe Thueler, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties”, Journal of Biomedical Optics (July 2003) 44. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998) 45. B.Gelebartetal.,“Phasefunctionsimulationintissuephantoms:afractal approach,” Pure Appl. Opt. 5(4), 377–388 (1996). 46. Jing-Wei Su, “Precancerous esophageal epithelia are associated with significantly increased scattering coefficients”, 2015 Optical Society of America 47. Renato Marchesini, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro”, Applied Optics Vol. 28, Issue 12 48. HONG-PO HSIEH, “Hybrid method to estimate two-layered superficial tissue optical properties from simulated data of diffuse reflectance spectroscopy.”, Vol. 57, No. 12 / 20 April 2018 / Applied Optics | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66874 | - |
dc.description.abstract | 漫反射光譜(Diffuse Reflectance Spectroscopy,DRS)是一種非侵入式技術,常用於偵測組織中的組成成分。利用蒙地卡羅演算法模擬光子在不同散射及吸收特性組織內之行進情形,藉此可以得到蒙地卡羅順向模擬光譜,再透過順向模擬光譜進行組織漫反射的光譜校正,並藉由模擬光譜與量測光譜的比對,最後,逆向擬合定量出組織的光學參數,例如:散射係數、吸收係數、血氧飽和、血紅素濃度、膠原蛋白濃度及上皮層厚度等。
在過去擬合順向模擬光譜與組織漫反射光譜時發現在光源(Light source)跟偵測端(detector)的間距短時在血紅素吸收波鋒經常無法達到較好的擬合,在過去模型中,散射相位函數(Scattering phase function)使用Henyey-Greenstein(HG),在新模型中,我使用Modified Henyey- Greenstein(MHG)作為相位函數,再由不同的測試資料測試過去模型與新模型的表現並比較其結果。最後使用此新模型用於萃取臨床光譜之光學參數,並分析在Normal、LSIL、HSIL情形下光學參數的改變。 本論文致力於改善組織模型及逆向擬合流程,建立出更貼近真實活體組織的模型以及能縮小模擬光譜與實際量測光譜間誤差的逆向擬合方法,最後利用一輸入為光學參數、輸出為模擬光譜的人工神經網路(Artificial neuron network, ANN)來取代原先順向使用的蒙地卡羅,縮短取得光學參數所需時間。並使用此新方法萃取出臨床光譜之光學參數再加以分析。 | zh_TW |
dc.description.abstract | Diffuse Reflectance Spectroscopy(DRS)is a non-invasive technique for detecting the composition of tissues. We can get the forward Monte Carlo simulated spectrum with simulating the travel situation of photons in different scattering and absorption tissues by Monte Carlo method. Comparing forward Monte Carlo spectrum with tissue spectrum. Finally, use the inverse fitting method to extract the optical properties of tissues.
The past fitting results have higher errors in the wavelength where hemoglobin has characteristic absorption peaks when the SDS is too small. In the past model, Henyey- Greenstein phase function(HGpf) was used. Here, I proposed to use Modify Henyey- Greenstein(MHGpf) as phase function, and verified that using MHGpf is more suitable than using HGpf in the simulation. Besides, the main absorption in stroma is hemoglobin. So hemoglobin concentration and oxygen saturation have the most influence toward the shape of spectrum. The shape of spectrum that wavelength between 410~440nm and 540~580nm shows the influence of hemoglobin. Here I use two-step fitting method. First step is to fit spectrum that wavelength between 410~440nm and 540~580nm and then restrict the range of hemoglobin concentration and oxygen saturation to do the second step of fitting. This thesis aim to improve the tissue model and the inverse Monte Carlo fitting method. Besides to build a more actual model that can reduce the error between simulation spectrum and the measure spectrum, I also use Artificial neuron network(ANN) to substitute the forward Monte Carlo. With the use of ANN, we can greatly accelerate the process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:10:03Z (GMT). No. of bitstreams: 1 ntu-109-R06945014-1.pdf: 2357760 bytes, checksum: 9f92bd6de3bf8bddb498a87705081ad3 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv 目錄 vi 圖表目錄 viii 表格目錄 xi 第一章、 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究問題 3 第二章、 文獻回顧與探討 5 2.1 子宮頸組織癌病變及診斷 5 2.2 漫反射光譜原理 7 2.3 蒙地卡羅演算法 9 2.4 組織模型 13 2.5 散射相位函數 16 2.5.1 非等向性因子 16 2.5.2 常見散射相位函數 18 第三章、 研究方法及步驟 20 3.1 光譜系統與光纖探頭 20 3.2 光譜校正流程 22 3.3 蒙地卡羅順向模擬 24 3.4 人工神經網路 25 3.5.1 數據預處理 25 3.5.2 模型建立 26 3.5 兩段式逆向擬合 31 第四章、 結果與討論 34 4.1訓練資料穩定性 34 4.2 人工神經網路穩定性 36 4.3逆向模型改善結果 39 4.3.1 HG與MHG順向模型對於光譜誤差之影響 39 4.3.2 兩段式逆向擬合對於萃取組織光學參數之差異 44 4.4 模擬光譜驗證 45 4.5 活體光學參數分析 52 第五章、結論與未來展望 60 5.1 結論 60 5.2 未來展望 61 參考文獻 62 | |
dc.language.iso | zh-TW | |
dc.title | 散射相位函數對子宮頸基質層組織模擬之影響 | zh_TW |
dc.title | Influence of scattering phase function In cervical stroma layer simulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳啟豪,江惠華 | |
dc.subject.keyword | 漫反射光譜,蒙地卡羅法,黏膜組織,散射相位函數,癌前病變,參數分析,人工神經網路, | zh_TW |
dc.subject.keyword | Diffuse Reflectance Spectroscopy,Monte Carlo method,Phase function,Mucosa tissue,Artificial neuron network, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU202000157 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。