Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡怡陞(Isheng Jason Tsai)
dc.contributor.authorMin Luen
dc.contributor.author陸敏zh_TW
dc.date.accessioned2021-06-17T01:10:00Z-
dc.date.available2025-02-04
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-16
dc.identifier.citation1. Poinar, G. O. The Evolutionary History of Nematodes. (BRILL, 2011).
2. Blaxter, M. L., Dorris, M., Frisse, L. M., Vida, J. T. & Thomas, W. K. A molecular evolutionary framework for the phylum Nematoda. 392, (1998).
3. Blaxter, M. & Koutsovoulos, G. The evolution of parasitism in Nematoda. Parasitology (2015) doi:10.1017/S0031182014000791.
4. Zarowiecki, M. & Berriman, M. What helminth genomes have taught us about parasite evolution. Parasitology (2015) doi:10.1017/S0031182014001449.
5. Weinstein, S. B. & Kuris, A. M. Independent origins of parasitism in Animalia. Biol. Lett. (2016) doi:10.1098/rsbl.2016.0324.
6. Grün, D. et al. Conservation of mRNA and protein expression during development of C.elegans. Cell Rep. 6, 565–577 (2014).
7. Hunt, V. L. et al. The genomic basis of parasitism in the Strongyloides clade of nematodes. Nat. Genet. 48, 299–307 (2016).
8. Smith, J. M. et al. Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution. Q. Rev. Biol. 60, 265–287 (1985).
9. Levin, M., Hashimshony, T., Wagner, F. & Yanai, I. Developmental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo. Dev. Cell (2012) doi:10.1016/j.devcel.2012.04.004.
10. Kalinka, A. T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature (2010) doi:10.1038/nature09634.
11. Liang, C., Musser, J. M., Cloutier, A., Prum, R. O. & Wagner, G. P. Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes. Genome Biol. Evol. 10, 538–552 (2018).
12. Choi, Y. J. et al. A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, brugia malayi. PLoS Negl. Trop. Dis. 5, (2011).
13. Tanaka, S. E. et al. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci. Rep. 9, 1–13 (2019).
14. Laing, R. et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 14, (2013).
15. Hunt, V. L., Hino, A., Yoshida, A. & Kikuchi, T. Comparative transcriptomics gives insights into the evolution of parasitism in Strongyloides nematodes at the genus, subclade and species level. Sci. Rep. 8, 1–5 (2018).
16. Stoltzfus, J. D., Minot, S., Berriman, M., Nolan, T. J. & Lok, J. B. RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways. PLoS Negl. Trop. Dis. 6, (2012).
17. Sommer, R. J. & Streit, A. Comparative Genetics and Genomics of Nematodes: Genome Structure, Development, and Lifestyle. Annu. Rev. Genet. 45, 1–20 (2011).
18. Lee, D. L. THE BIOLOGY OF NEMATODES. The Biology of Nematodes (CRC Press, 2002). doi:10.4324/9780203166437.
19. Kulkarni, A., Lightfoot, J. W. & Streit, A. Germline organization in Strongyloides nematodes reveals alternative differentiation and regulation mechanisms. Chromosoma (2016) doi:10.1007/s00412-015-0562-5.
20. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics (2014) doi:10.1093/bioinformatics/btu170.
21. Lee, R. Y. N. et al. WormBase 2017: Molting into a new stage. Nucleic Acids Res. (2018) doi:10.1093/nar/gkx998.
22. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods (2015) doi:10.1038/nmeth.3317.
23. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (2014) doi:10.1093/bioinformatics/btt656.
24. Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-Content Normalization for RNA-Seq Data. BMC Bioinformatics (2011) doi:10.1186/1471-2105-12-480.
25. Leek, J. T. et al. sva: Surrogate Variable Analysis. R package version 3.20.0. (2016).
26. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. (2015) doi:10.1186/s13059-015-0721-2.
27. Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. (2010) doi:10.1093/nar/gkq291.
28. Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. (2007) doi:10.1093/molbev/msm088.
29. Spencer, W. C. et al. A spatial and temporal map of C. elegans gene expression. Genome Res. 21, 325–341 (2011).
30. Reinke, V., Gil, I. S., Ward, S. & Kazmer, K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131, 311–323 (2004).
31. Levin, M. et al. The mid-developmental transition and the evolution of animal body plans. Nature 531, 637–641 (2016).
32. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) doi:10.1186/s13059-014-0550-8.
33. Baskaran, P. et al. Ancient gene duplications have shaped developmental stage-specific expression in Pristionchus pacificus. BMC Evol. Biol. (2015) doi:10.1186/s12862-015-0466-2.
34. Lok, J. B. Strongyloides stercoralis and Relatives: Recent Advances in General and Molecular Biology. Current Tropical Medicine Reports (2014) doi:10.1007/s40475-014-0033-8.
35. Novelli, J., Page, A. P. & Hodgkin, J. The C terminus of collagen SQT-3 has complex and essential functions in nematode collagen assembly. Genetics (2006) doi:10.1534/genetics.105.053637.
36. Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science (80-. ). 331, 555–561 (2011).
37. Chang, A. Y. & Liao, B. Reduced translational efficiency of eukaryotic genes after duplication. 1–26 (2020).
38. Celniker, S. E. et al. Unlocking the secrets of the genome. Nature (2009) doi:10.1038/459927a.
39. Coghlan, A. et al. Comparative genomics of the major parasitic worms. Nat. Genet. 51, 163–174 (2019).
40. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. C. elegans II. (Cold Spring Harbor Laboratory Pr, 1997).
41. Fei, T., Zhang, T., Shi, W. & Yu, T. Mitigating the adverse impact of batch effects in sample pattern detection. Bioinformatics (2018) doi:10.1093/bioinformatics/bty117.
42. Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).
43. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature (2019) doi:10.1038/s41586-019-1338-5.
44. Abzhanov, A. Von Baer’s law for the ages: Lost and found principles of developmental evolution. Trends Genet. 29, 712–722 (2013).
45. Kaletsky, R. et al. Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genet. 14, (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66872-
dc.description.abstract線蟲是物種豐富度極高的動物,具有多樣的棲息地和生活方式,其中包括腐生性,以及能夠寄生動物或植物的寄生性物種。寄生性線蟲的感染能力會隨著發育階段產生變化,從而感染宿主並完成生命週期。雖然線蟲寄生性的出現已經被證實是多次獨立演化的結果,寄生過程中的共同壓力,例如在生活週期中轉換和適應棲息環境以及規避和對抗宿主的免疫系統,導致寄生性的線蟲發展出相似的表現型和發育時期。透過比較8個線蟲物種發育時期的48個轉錄組,此研究發現不同發育時期的轉錄組廣泛的分為胚胎、幼蟲以及成蟲三個群集,代表線蟲生命週期的基因表現在一定程度上具有保守性。組織特異性基因(例如卵母細胞和皮下組織)在各個發育時期具有不同的程度的基因表現,能夠部分闡述此種模式。線蟲普遍具有3至5個幼蟲階段,這些階段的轉錄組在每個物種之內高度相關,說明幼蟲階段之間存在高度依賴性。在隱桿線蟲屬 (Caenorhabditis elegans-briggsae) 以及類圓蟲屬 (Strongyloides stercoralis-venezuelensis) 的同屬物種比較之中,我們發現大約50%的基因具有多效性,不會專一表現在特定的發育時期,其直系同源基因也有半數具有多效性,但表現模式在不同物種之間並不相似。基因表現的高頻率轉換導致鄰近發育時期的協同演化,進而在線蟲進化過程中產生了具有物種特性的轉錄組。綜合而言,此研究初探胚胎發育時期後的線蟲轉錄組演化。zh_TW
dc.description.abstractNematodes are highly abundant animals with diverse habitats and lifestyles. Some are free-living while others parasitize animals or plants, and among the latter, infection abilities change across developmental stages to infect hosts and complete life cycles. Though parasitism has independently arisen multiple times over evolutionary history, the common pressures of parasitism—such as adapting to the host environment, evading and subverting the host immune system, and changing environments across the life cycle—have led parasites to develop similar phenotypes and developmental stages. In this study, we compared 48 transcriptomes of different developmental stages across eight nematode species. The transcriptomes were found clustered broadly into embryo, larva and adult categories, suggesting that gene expression is conserved to some extent across the entire nematode life cycle. Such patterns were partly accounted for by tissue-specific genes—such as those in oocytes and the hypodermis—being expressed at different proportions. Although nematodes typically have 3-5 larval stages, the transcriptomes for these stages were found to be highly correlated within each species, suggesting high dependence among larval stages. In the case of Caenorhabditis elegans-briggsae and Strongyloides stercoralis-venezuelensis comparisons, we found that around 50% of genes were pleiotropic; half of their orthologs were also pleiotropic, but expressed in different stages. Such frequent rewiring of expression has resulted in concerted transcriptome evolution across adjacent stages, thus generating an individualized species transcriptome in the course of nematode evolution. Our study provides a first insight into the evolution of nematode transcriptome beyond embryonic development.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:10:00Z (GMT). No. of bitstreams: 1
ntu-109-R06b48003-1.pdf: 4991699 bytes, checksum: 5e78254c9667643258a7fbd2b04ba49a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
ACKNOWLEDGEMENT/致謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES viii
LIST OF SUPPLEMENTARY MATERIALS ix
CHAPTER 1. Introduction 1
CHAPTER 2. Material and Methods 4
2.1 RNA-seq mapping and normalization 4
2.2 Phylogenetic and evolutionary analysis 5
2.3 Comparative transcriptomic analysis 5
CHAPTER 3. Results 7
3.1 Data collection 7
3.2 Gene family contributions to the transcriptome 7
3.3 Transcriptomes involved in nematode development were clustered into embryo, larval, and adult stages 10
3.4 Differential levels of correlated transcription evolution (LCE) in nematodes 12
3.5 Expression divergence 14
CHAPTER 4. Discussions 16
Figures 20
Tables 32
References 33
Supplementary Materials 38
dc.language.isozh-TW
dc.subject線蟲zh_TW
dc.subject協同演化zh_TW
dc.subject比較轉錄體zh_TW
dc.subject發育zh_TW
dc.subjectConcerted evolutionen
dc.subjectDevelopmenten
dc.subjectNematodesen
dc.subjectComparative transcriptomicsen
dc.title以比較轉錄體分析線蟲發育期間的協同演化zh_TW
dc.titleComparative transcriptomics of nematodes reveal differential levels of correlated evolution between developmental stagesen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖本揚(Ben-Yang Liao),莊樹諄(Trees-Juen Chuang),王忠信(John Wang)
dc.subject.keyword比較轉錄體,線蟲,發育,協同演化,zh_TW
dc.subject.keywordComparative transcriptomics,Nematodes,Development,Concerted evolution,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202000148
dc.rights.note有償授權
dc.date.accepted2020-01-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved