請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66827完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 華國泰(Kuo-Tai Hua) | |
| dc.contributor.author | Yu-Cheng Cheng | en |
| dc.contributor.author | 鄭禹晟 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:09:01Z | - |
| dc.date.available | 2022-02-02 | |
| dc.date.copyright | 2021-02-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-03 | |
| dc.identifier.citation | Ahrens, T. D., Bang-Christensen, S. R., Jorgensen, A. M., Loppke, C., Spliid, C. B., Sand, N. T., . . . Agerbaek, M. O. (2020). The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol, 8, 749. doi:10.3389/fcell.2020.00749 Aitkenhead, M., Wang, S. J., Nakatsu, M. N., Mestas, J., Heard, C., Hughes, C. C. (2002). Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM. Microvasc Res, 63(2), 159-171. doi:10.1006/mvre.2001.2380 Bechard, D., Gentina, T., Delehedde, M., Scherpereel, A., Lyon, M., Aumercier, M., . . . Lassalle, P. (2001). Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity. J Biol Chem, 276(51), 48341-48349. doi:10.1074/jbc.M108395200 Bechard, D., Meignin, V., Scherpereel, A., Oudin, S., Kervoaze, G., Bertheau, P., . . . Lassalle, P. (2000). Characterization of the secreted form of endothelial-cell-specific molecule 1 by specific monoclonal antibodies. J Vasc Res, 37(5), 417-425. doi:10.1159/000025758 Bechard, D., Scherpereel, A., Hammad, H., Gentina, T., Tsicopoulos, A., Aumercier, M., . . . Lassalle, P. (2001). Human endothelial-cell specific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesion molecule-1. J Immunol, 167(6), 3099-3106. doi:10.4049/jimmunol.167.6.3099 Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., Zako, M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 68, 729-777. doi:10.1146/annurev.biochem.68.1.729 Boonstra, J. J., van Marion, R., Beer, D. G., Lin, L., Chaves, P., Ribeiro, C., . . . Dinjens, W. N. (2010). Verification and unmasking of widely used human esophageal adenocarcinoma cell lines. J Natl Cancer Inst, 102(4), 271-274. doi:10.1093/jnci/djp499 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394-424. doi:10.3322/caac.21492 Cancer Genome Atlas Research, N., Analysis Working Group: Asan, U., Agency, B. C. C., Brigham, Women's, H., Broad, I., . . . Project Team: National Institutes of, H. (2017). Integrated genomic characterization of oesophageal carcinoma. Nature, 541(7636), 169-175. doi:10.1038/nature20805 Chen, L. Y., Liu, X., Wang, S. L., Qin, C. Y. (2010). Over-expression of the Endocan gene in endothelial cells from hepatocellular carcinoma is associated with angiogenesis and tumour invasion. J Int Med Res, 38(2), 498-510. doi:10.1177/147323001003800213 Clark, W. H. (1991). Tumour progression and the nature of cancer. Br J Cancer, 64(4), 631-644. doi:10.1038/bjc.1991.375 Cook, M. B., Chow, W. H., Devesa, S. S. (2009). Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977-2005. Br J Cancer, 101(5), 855-859. doi:10.1038/sj.bjc.6605246 Cui, Y., Guo, W., Li, Y., Shi, J., Ma, S., Guan, F. (2020). Pan-cancer analysis identifies ESM1 as a novel oncogene for esophageal cancer. Esophagus. doi:10.1007/s10388-020-00796-9 Dahlberg, P. S., Ferrin, L. F., Grindle, S. M., Nelson, C. M., Hoang, C. D., Jacobson, B. (2004). Gene expression profiles in esophageal adenocarcinoma. Ann Thorac Surg, 77(3), 1008-1015. doi:10.1016/j.athoracsur.2003.09.051 Depontieu, F., Grigoriu, B. D., Scherpereel, A., Adam, E., Delehedde, M., Gosset, P., Lassalle, P. (2008). Loss of Endocan tumorigenic properties after alternative splicing of exon 2. BMC Cancer, 8, 14. doi:10.1186/1471-2407-8-14 Enzinger, P. C., Mayer, R. J. (2003). Esophageal cancer. N Engl J Med, 349(23), 2241-2252. doi:10.1056/NEJMra035010 Fagerberg, L., Hallstrom, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., . . . Uhlen, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 13(2), 397-406. doi:10.1074/mcp.M113.035600 Grigoriu, B. D., Depontieu, F., Scherpereel, A., Gourcerol, D., Devos, P., Ouatas, T., . . . Lassalle, P. (2006). Endocan expression and relationship with survival in human non-small cell lung cancer. Clin Cancer Res, 12(15), 4575-4582. doi:10.1158/1078-0432.CCR-06-0185 Hvid-Jensen, F., Pedersen, L., Drewes, A. M., Sorensen, H. T., Funch-Jensen, P. (2011). Incidence of adenocarcinoma among patients with Barrett's esophagus. N Engl J Med, 365(15), 1375-1383. doi:10.1056/NEJMoa1103042 Iozzo, R. V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem, 67, 609-652. doi:10.1146/annurev.biochem.67.1.609 Iozzo, R. V., Schaefer, L. (2015). Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol, 42, 11-55. doi:10.1016/j.matbio.2015.02.003 Janke, J., Engeli, S., Gorzelniak, K., Feldpausch, M., Heintze, U., Bohnke, J., . . . Sharma, A. M. (2006). Adipose tissue and circulating endothelial cell specific molecule-1 in human obesity. Horm Metab Res, 38(1), 28-33. doi:10.1055/s-2006-924973 Kang, Y. H., Ji, N. Y., Lee, C. I., Lee, H. G., Kim, J. W., Yeom, Y. I., . . . Song, E. Y. (2011). ESM-1 silencing decreased cell survival, migration, and invasion and modulated cell cycle progression in hepatocellular carcinoma. Amino Acids, 40(3), 1003-1013. doi:10.1007/s00726-010-0729-6 Kim, J. H., Park, M. Y., Kim, C. N., Kim, K. H., Kang, H. B., Kim, K. D., Kim, J. W. (2012). Expression of endothelial cell-specific molecule-1 regulated by hypoxia inducible factor-1alpha in human colon carcinoma: impact of ESM-1 on prognosis and its correlation with clinicopathological features. Oncol Rep, 28(5), 1701-1708. doi:10.3892/or.2012.2012 Kim, S. H., Turnbull, J., Guimond, S. (2011). Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol, 209(2), 139-151. doi:10.1530/JOE-10-0377 Koumangoye, R. B., Andl, T., Taubenslag, K. J., Zilberman, S. T., Taylor, C. J., Loomans, H. A., Andl, C. D. (2015). SOX4 interacts with EZH2 and HDAC3 to suppress microRNA-31 in invasive esophageal cancer cells. Mol Cancer, 14, 24. doi:10.1186/s12943-014-0284-y Lassalle, P., Molet, S., Janin, A., Heyden, J. V., Tavernier, J., Fiers, W., . . . Tonnel, A. B. (1996). ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines. J Biol Chem, 271(34), 20458-20464. doi:10.1074/jbc.271.34.20458 Leroy, X., Aubert, S., Zini, L., Franquet, H., Kervoaze, G., Villers, A., . . . Lassalle, P. (2010). Vascular endocan (ESM-1) is markedly overexpressed in clear cell renal cell carcinoma. Histopathology, 56(2), 180-187. doi:10.1111/j.1365-2559.2009.03458.x Liu, N., Zhang, L. H., Du, H., Hu, Y., Zhang, G. G., Wang, X. H., . . . Ji, J. F. (2010). Overexpression of endothelial cell specific molecule-1 (ESM-1) in gastric cancer. Ann Surg Oncol, 17(10), 2628-2639. doi:10.1245/s10434-010-1037-9 Mantovani, A., Bussolino, F., Introna, M. (1997). Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today, 18(5), 231-240. doi:10.1016/s0167-5699(97)81662-3 Perrimon, N., Bernfield, M. (2000). Specificities of heparan sulphate proteoglycans in developmental processes. Nature, 404(6779), 725-728. doi:10.1038/35008000 Rocha, S. F., Schiller, M., Jing, D., Li, H., Butz, S., Vestweber, D., . . . Adams, R. H. (2014). Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res, 115(6), 581-590. doi:10.1161/CIRCRESAHA.115.304718 Rockett, J. C., Larkin, K., Darnton, S. J., Morris, A. G., Matthews, H. R. (1997). Five newly established oesophageal carcinoma cell lines: phenotypic and immunological characterization. Br J Cancer, 75(2), 258-263. doi:10.1038/bjc.1997.42 Sarrazin, S., Adam, E., Lyon, M., Depontieu, F., Motte, V., Landolfi, C., . . . Delehedde, M. (2006). Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta, 1765(1), 25-37. doi:10.1016/j.bbcan.2005.08.004 Sasisekharan, R., Shriver, Z., Venkataraman, G., Narayanasami, U. (2002). Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer, 2(7), 521-528. doi:10.1038/nrc842 Scherpereel, A., Depontieu, F., Grigoriu, B., Cavestri, B., Tsicopoulos, A., Gentina, T., . . . Lassalle, P. (2006). Endocan, a new endothelial marker in human sepsis. Crit Care Med, 34(2), 532-537. doi:10.1097/01.ccm.0000198525.82124.74 Scherpereel, A., Gentina, T., Grigoriu, B., Senechal, S., Janin, A., Tsicopoulos, A., . . . Lassalle, P. (2003). Overexpression of endocan induces tumor formation. Cancer Res, 63(18), 6084-6089. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14522939 Schmittgen, T. D., Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 3(6), 1101-1108. doi:10.1038/nprot.2008.73 Shen, Q., Lee, E. S., Pitts, R. L., Wu, M. H., Yuan, S. Y. (2010). Tissue inhibitor of metalloproteinase-2 regulates matrix metalloproteinase-2-mediated endothelial barrier dysfunction and breast cancer cell transmigration through lung microvascular endothelial cells. Mol Cancer Res, 8(7), 939-951. doi:10.1158/1541-7786.MCR-09-0523 Shin, J. W., Huggenberger, R., Detmar, M. (2008). Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood, 112(6), 2318-2326. doi:10.1182/blood-2008-05-156331 Siegel, R. L., Miller, K. D., Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin, 66(1), 7-30. doi:10.3322/caac.21332 Sobin, L. H., Hermanek, P., Hutter, R. V. (1988). TNM classification of malignant tumors. A comparison between the new (1987) and the old editions. Cancer, 61(11), 2310-2314. doi:10.1002/1097-0142(19880601)61:11<2310::aid-cncr2820611127>3.0.co;2-x Sun, L. P., Yan, L. B., Liu, Z. Z., Zhao, W. J., Zhang, C. X., Chen, Y. M., . . . Liu, X. (2020). Dietary factors and risk of mortality among patients with esophageal cancer: a systematic review. BMC Cancer, 20(1), 287. doi:10.1186/s12885-020-06767-8 Tumova, S., Woods, A., Couchman, J. R. (2000). Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol, 32(3), 269-288. doi:10.1016/s1357-2725(99)00116-8 Yanagishita, M. (1993). Function of proteoglycans in the extracellular matrix. Acta Pathol Jpn, 43(6), 283-293. doi:10.1111/j.1440-1827.1993.tb02569.x Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis, 21(3), 497-503. doi:10.1093/carcin/21.3.497 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66827 | - |
| dc.description.abstract | 世界十大癌症死因之一的食道癌(Esophageal cancer)在發生初期通常沒有明顯的症狀,以至於患者吞嚥困難、嘔吐及胸痛等症狀明顯的晚期才被診斷;此外目前的治療方式多以手術、化療與放療,但往往患者預後不佳且復發率極高,使得食道癌患者的五年存活率不到20%。其中,食道腺癌(Esophageal Adenocarcinoma),發生在靠近胃部的食道下段上皮組織的腺體細胞癌化,在過去三十年間,食道腺癌的發生率逐漸攀升為歐美國家最為常見的食道癌類型。內皮細胞特異性分子(Endothelial cell specific molecule-1, ESM1)是許多組織及器官內皮細胞分泌的蛋白聚醣(Proteoglycan),過去研究指出,許多癌症腫瘤形成時,ESM1會大量的表現,並對於癌細胞的惡性、腫瘤生長以及轉移有著高度的關聯性。我們從臨床統計資料庫The Cancer Genome Atlas (TCGA)中發現,食道腺癌的進展與ESM1的表現量有著顯著的關係。因此我們利用食道腺癌細胞株FLO-1、OE-33以及OE-19,探討ESM1對於食道腺癌特性的改變。FLO-1在ESM1大量表現的情況下,細胞的增生加快;而在OE-19中抑制ESM1表現時,可顯著降低細胞的生長。進一步使用Signal peptide缺失以及Glycosylation site (S137) 變異的ESM1確認,發現到ESM1分泌及Glycosylation的缺失,會導致細胞增生的能力下降。此外以NSG小鼠動物模式中觀察,確認ESM1能夠促進腫瘤的生長。將腫瘤進行免疫組織化學染色以及資料庫GSEA的結果判斷,食道腺癌腫瘤的血管生成能力可能受到ESM1的調控,因此我們進一步利用小動脈細胞株HMEC-1以及動物模式,進行血管新生的相關實驗。細胞模式與動物模式的實驗結果都顯示ESM1的大量表現的確能夠增加血管生成的能力,造成腫瘤的惡化與發展加劇,點出ESM1作為食道腺癌的生物標記可能性。 | zh_TW |
| dc.description.abstract | Esophageal cancer is one of the top ten causes of cancer death worldwide. Due to it has no obvious symptoms during the early stage of the disease, patients had usually been diagnosed lately while swallow difficulty, vomit, and chest pain happened. The main treatment strategies including tumor resection, radiation therapy, and chemotherapy. However, esophageal cancer still has a bad prognosis and a high disease recurrence rate. The 5-years survival rate of esophageal cancer was less than 20%. In the past thirty years, the incidence of esophageal adenocarcinoma (EAC), which occurred from gland cells of the gastrointestinal tract, grew rapidly and became the most prevalent type of esophageal cancer in the Western Countries. Endothelial cell-specific molecule-1 (ESM1) is a secreted proteoglycan that is involved in angiogenesis in several tissues and organs. Previous reports indicated that ESM1 was overexpressed in many cancer types and influenced the malignancy of cancer cells, tumor growth, and metastasis. We observed a significant relationship between ESM1 and EAC development by analyzing the TCGA database. According to this information, we used three EAC cell lines, FLO-1, OE-19, and OE-33, as our in vitro models to investigate the role of ESM1 in EAC malignancy. Our study showed that ESM1 overexpression in FLO-1 cells significantly promotes its cell proliferation. In contrast, the knockdown of ESM in OE-19 cells inhibits its cell proliferation. Moreover, we confirmed the importance of secretory and glycosylated ESM1 in the regulation of EAC proliferation by using two ESM1 constructs, ESM1 without signal peptide (ESM1wo) and glycosylation point mutation (ESM1-S137A). In the xenograft model, ESM1 can also promote in vivo tumor growth of EAC cells. Furthermore, based on the GSEA analysis of TCGA EAC dataset and IHC analysis of xenografts in mouse models, we speculated that the ESM1 may also promote EAC tumor development by its angiogenic effects. We further confirmed in vitro and in vivo angiogenic potential of ESM1 in EAC conditioned media with HMEC-1 and plug assays respectively. Collectively, based on our experimental results, ESM1 may promote EAC malignancies through not only provides proliferation benefit to cancer cells but also help to establish tumor vasculature by inducing angiogenesis. These results revealed that ESM1 might be a potential therapeutic target for EAC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:09:01Z (GMT). No. of bitstreams: 1 U0001-0202202100365100.pdf: 7299764 bytes, checksum: 2cc8b676d55b5afb8c3b94296df6e375 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | ABBREVIATION I 致謝 II 中文摘要 III ABSTRACT IV CONTENTS VI CHAPTER 1 INTRODUCTION 1 1.1 Esophageal cancer: Epidemiology, diagnosis, and therapies 1 1.2.1 ESM1: A secretory dermatan sulfate proteoglycan 2 1.2.2 Major function of ESM1 3 1.2.3 ESM1 in cancer progression 4 1.4 Research motivation 5 CHAPTER 2 MATERIALS METHODS 7 2.1 Cell culture 7 2.3 Lentiviral particle preparation and infection 8 2.4 RNA extraction and Quantitative real-time PCR 9 2.5 Protein extraction and Immunoblotting 10 2.6 Cell proliferation assay and colony formation assay 11 2.7 Anchorage-independent growth assay 11 2.8 Tube formation assay 12 2.9 Wound healing 12 2.10 Spheroid sprouting assay 13 2.11 In vivo Matrigel plug assay 13 2.12 Cell cycle analysis 14 2.13 Xenograft mouse model 14 CHAPTER 3 RESULTS 16 3.1 The high ESM1 expression is tightly correlated with esophageal adenocarcinoma cancer malignancy rather than squamous cell carcinoma. 16 3.2 ESM1 expresses in the EAC cell lines and regulates their short-term proliferation abilities. 17 3.3 ESM1 can promote EAC long-term cell proliferation ability. 18 3.4 The secretary and glycosylated form of ESM1 is responsible for its proliferative effects in EAC cells. 19 3.5 ESM1 contributes to tumor growth in EAC. 20 3.6 Secretory ESM1 promotes angiogenesis capability in EAC. 21 CHAPTER 4 DISCUSSION 24 Figure 1. ESM1 is highly expressed in esophageal adenocarcinoma rather than esophageal squamous cell carcinoma and positively correlated with esophageal adenocarcinoma development. 30 Figure 2. Comparison of ESM1 expression in EAC wild type cell lines FLO-1, OE-33, and OE-19, and regulation of the ESM1 expression by lentivirus. 33 Figure 3. ESM1 promotes the proliferation ability of esophageal adenocarcinoma cell lines. 36 Figure 4 Compared with esophageal squamous cell carcinoma, esophageal adenocarcinoma cannot grow in the soft agar environment. 39 Figure 5 The synthesis and secretion of ESM1 influence cell proliferation. 41 Figure 6. The effect of overexpression and knockdown ESM1 in the mouse model. 44 Figure 7 ESM1 may potentially regulate angiogenesis in esophageal adenocarcinoma. 46 Figure 8 The secretory ESM1 proteins can promote the angiogenesis ability of endothelial cell line HMEC-1. 50 REFERENCES 53 | |
| dc.language.iso | en | |
| dc.subject | 細胞增生 | zh_TW |
| dc.subject | 食道腺癌 | zh_TW |
| dc.subject | 內皮細胞特異性分子 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | Proliferation | en |
| dc.subject | Endothelial cell-specific molecule-1 | en |
| dc.subject | Angiogenesis | en |
| dc.subject | Esophageal adenocarcinoma | en |
| dc.title | 探討內皮細胞特異分子ESM1在食道腺癌中調控細胞增生與血管新生的角色 | zh_TW |
| dc.title | The Role of Endothelial Cell Specific Molecule- 1 (ESM1) in Regulating Proliferation and Angiogenesis of Esophageal Adenocarcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡銘賢(Ming-Hsien Chien),鄭朝文(Chao-Wen Cheng) | |
| dc.subject.keyword | 食道腺癌,內皮細胞特異性分子,細胞增生,血管新生, | zh_TW |
| dc.subject.keyword | Esophageal adenocarcinoma,Endothelial cell-specific molecule-1,Proliferation,Angiogenesis, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202100355 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0202202100365100.pdf 未授權公開取用 | 7.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
