請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66825完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張書瑋(Shu-Wei Chang) | |
| dc.contributor.author | Kuan-Ming Chiu | en |
| dc.contributor.author | 邱冠銘 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:08:59Z | - |
| dc.date.available | 2021-02-04 | |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-21 | |
| dc.identifier.citation | [1] S. Srikanth, P. Saravanan, V. Kumar, D. Saravanan, L. Sivakumar, S. Sisodia, K. Ravi, B. Jha, Property enhancement in metastable 301LN austenitic stainless steel through Strain-Induced Martensitic Transformation and its Reversion (SIMTR) for Metro Coach Manufacture, IJMEE 2 (2013) 203-213.
[2] U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials, Nature materials 14 (1) (2015) 23-36. [3] R.O. Ritchie, The conflicts between strength and toughness, Nature materials 10 (11) (2011) 817. [4] M.A. Meyers, P.-Y. Chen, Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials, MRS BULLETIN 40 (2015). [5] P. Calvert, A. Azhari, Biomimetic Materials: Properties and Processing, (2001). [6] F. Xia, L. Jiang, Bio‐inspired, smart, multiscale interfacial materials, Advanced materials 20 (15) (2008) 2842-2858. [7] H.B. Gray, Powering the planet with solar fuel, Nature chemistry 1 (2) (2009) 112. [8] F. Libonati, V. Cipriano, L. Vergani, M.J. Buehler, Computational framework to predict failure and performance of bone-inspired materials, ACS Biomaterials Science & Engineering 3 (12) (2017) 3236-3243. [9] H. Chen, Y. Liu, A non-local 3D lattice particle framework for elastic solids, International Journal of Solids and Structures 81 (2016) 411-420. [10] M. Sarikaya, An introduction to biomimetics: a structural viewpoint, Microscopy research and technique 27 (5) (1994) 360-375. [11] J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale, Science 309 (5732) (2005) 275-278. [12] P.-Y. Chen, A. Lin, Y.-S. Lin, Y. Seki, A. Stokes, J. Peyras, E. Olevsky, M.A. Meyers, J. McKittrick, Structure and mechanical properties of selected biological materials, Journal of the mechanical behavior of biomedical materials 1 (3) (2008) 208-226. [13] G. Mayer, Rigid biological systems as models for synthetic composites, Science 310 (5751) (2005) 1144-1147. [14] P.-Y. Chen, J. McKittrick, M.A. Meyers, Biological materials: functional adaptations and bioinspired designs, Progress in Materials Science 57 (8) (2012) 1492-1704. [15] M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, Y. Seki, Biological materials: structure and mechanical properties, Progress in Materials Science 53 (1) (2008) 1-206. [16] R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Composites reinforced in three dimensions by using low magnetic fields, Science 335 (6065) (2012) 199-204. [17] B. Wang, W. Yang, J. McKittrick, M.A. Meyers, Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration, Progress in Materials Science 76 (2016) 229-318. [18] S.E. Naleway, M.M. Porter, J. McKittrick, M.A. Meyers, Structural design elements in biological materials: application to bioinspiration, Advanced materials 27 (37) (2015) 5455-5476. [19] Y. Miyamoto, W. Kaysser, B. Rabin, A. Kawasaki, R.G. Ford, Functionally graded materials: design, processing and applications, Springer Science & Business Media, 2013. [20] S. Suresh, A. Mortensen, Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour, International Materials Reviews 42 (3) (1997) 85-116. [21] S. Suresh, Graded materials for resistance to contact deformation and damage, Science 292 (5526) (2001) 2447-2451. [22] Z. Liu, M.A. Meyers, Z. Zhang, R.O. Ritchie, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Progress in Materials Science 88 (2017) 467-498. [23] B.R. Lawn, J.J.-W. Lee, H. Chai, Teeth: among nature's most durable biocomposites, Annual Review of Materials Research 40 (2010) 55-75. [24] S.J. Marshall, M. Balooch, S. Habelitz, G. Balooch, R. Gallagher, G.W. Marshall, The dentin–enamel junction—a natural, multilevel interface, Journal of the European Ceramic Society 23 (15) (2003) 2897-2904. [25] C.P. Lin, W.H. Douglas, S.L. Erlandsen, Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth, Journal of Histochemistry & Cytochemistry 41 (3) (1993) 381-388. [26] R.K. Chintapalli, M. Mirkhalaf, A.K. Dastjerdi, F. Barthelat, Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms, Bioinspiration & biomimetics 9 (3) (2014) 036005. [27] B.J. Bruet, J. Song, M.C. Boyce, C. Ortiz, Materials design principles of ancient fish armour, Nature materials 7 (9) (2008) 748. [28] P. Liu, D. Zhu, Y. Yao, J. Wang, T.Q. Bui, Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system, Materials & Design 99 (2016) 201-210. [29] Y. Tan, S. Hoon, P.A. Guerette, W. Wei, A. Ghadban, C. Hao, A. Miserez, J.H. Waite, Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient, Nature chemical biology 11 (7) (2015) 488. [30] A. Miserez, Y. Li, J.H. Waite, F. Zok, Jumbo squid beaks: inspiration for design of robust organic composites, Acta Biomaterialia 3 (1) (2007) 139-149. [31] A. Miserez, T. Schneberk, C. Sun, F.W. Zok, J.H. Waite, The transition from stiff to compliant materials in squid beaks, Science 319 (5871) (2008) 1816-1819. [32] J.H. Waite, H.C. Lichtenegger, G.D. Stucky, P. Hansma, Exploring molecular and mechanical gradients in structural bioscaffolds, Biochemistry 43 (24) (2004) 7653-7662. [33] K.J. Coyne, X.-X. Qin, J.H. Waite, Extensible collagen in mussel byssus: a natural block copolymer, Science 277 (5333) (1997) 1830-1832. [34] M.J. Harrington, A. Masic, N. Holten-Andersen, J.H. Waite, P. Fratzl, Iron-clad fibers: a metal-based biological strategy for hard flexible coatings, Science 328 (5975) (2010) 216-220. [35] N. Holten-Andersen, G.E. Fantner, S. Hohlbauch, J.H. Waite, F.W. Zok, Protective coatings on extensible biofibres, Nature materials 6 (9) (2007) 669. [36] A.K. Ray, S. Mondal, S.K. Das, P. Ramachandrarao, Bamboo—A functionally graded composite-correlation between microstructure and mechanical strength, Journal of materials science 40 (19) (2005) 5249-5253. [37] J. Wang, Z. Zou, J. Ye, Functionally graded materials VII, Mater. Sci. Forum, Vol. 423, Trans Tech Publ, 2003, p. 485. [38] D. Grosser, W. Liese, On the anatomy of Asian bamboos, with special reference to their vascular bundles, Wood Science and technology 5 (4) (1971) 290-312. [39] P.G. Dixon, L.J. Gibson, The structure and mechanics of Moso bamboo material, Journal of the Royal Society Interface 11 (99) (2014) 20140321. [40] S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, H. Shimizu, Fiber texture and mechanical graded structure of bamboo, Composites Part B: Engineering 28 (1-2) (1997) 13-20. [41] F. Nogata, H. Takahashi, Intelligent functionally graded material: bamboo, Composites Engineering 5 (7) (1995) 743-751. [42] Z.-P. Shao, C.-H. Fang, S.-X. Huang, G.-L. Tian, Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure, Wood Science and technology 44 (4) (2010) 655-666. [43] Y. Wang, C. Zhang, W. Chen, An analytical model to predict material gradient and anisotropy in bamboo, Acta Mechanica 228 (8) (2017) 2819-2833. [44] H. Chen, E. Lin, Y. Liu, A novel Volume-Compensated Particle method for 2D elasticity and plasticity analysis, International Journal of Solids and Structures 51 (9) (2014) 1819-1833. [45] P. Tran, T.D. Ngo, A. Ghazlan, D. Hui, Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings, Composites Part B: Engineering 108 (2017) 210-223. [46] L. Djumas, A. Molotnikov, G.P. Simon, Y. Estrin, Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry, Scientific reports 6 (2016) 26706. [47] G.X. Gu, F. Libonati, S.D. Wettermark, M.J. Buehler, Printing nature: Unraveling the role of nacre's mineral bridges, Journal of the mechanical behavior of biomedical materials 76 (2017) 135-144. [48] T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite element methods for material modeling, Modelling and simulation in materials science and engineering 17 (4) (2009) 043001. [49] M. Ostoja-Starzewski, Lattice models in micromechanics, Appl. Mech. Rev. 55 (1) (2002) 35-60. [50] J.J. Monaghan, Smoothed particle hydrodynamics, Reports on progress in physics 68 (8) (2005) 1703. [51] G.A. Buxton, C.M. Care, D.J. Cleaver, A lattice spring model of heterogeneous materials with plasticity, Modelling and simulation in materials science and engineering 9 (6) (2001) 485. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66825 | - |
| dc.description.abstract | 近年來對於材料的開發有了不同於以往的方向,眾多生物的結構成為新穎高性能材料之設計靈感。具特殊結構元素的自然材料使得生物具備了適應大自然複雜力學環境的能力,這些天然材料大多數是由簡單的原材料例如礦物質、蛋白質複合而成。其中,梯度結構是自然界中常見的性能優化策略之一,基本的軟硬材透過梯度分布方式能夠使其性能超越人造材料,因此本研究將探討具梯度結構的複合材料對機械性能之影響。
本研究致力於使材料能夠具備高韌性卻不失強度,為了模擬不同梯度模型的力學性質,使用二維三角晶格彈簧的模型及電腦計算方法,預測仿生材料的裂縫發展以及機械性質。本論文梯度的設計可以分為結構梯度以及材料梯度。結構梯度為模仿竹子維管束由中心至表面分布不均勻的形貌,進而提出了包含仿維管束形狀的拓樸軸長比、拓樸數量、梯度層數、拓樸水平與垂直距離以及梯度方向等六種獨立的設計參數以及不同參數對力學性能的影響,找到最佳參數組合並歸納出以結構變化為梯度的設計方向。 除了結構梯度,本論文也固定拓樸為無梯度的均勻結構,加入了第三種材料:介質材料(Medium)。而這種由三種材料複合而成的新的梯度設計策略為材料梯度。在本研究中將材料梯度分為層狀(Layer)以及階層式(Hierarchical)的材料梯度,其中層狀梯度包含了正向及反向。本論文除了提出階層式梯度的四種梯度模式,也結合了三種不同階層結構的設計。透過這些變化,結合階層化設計與仿竹子的結構梯度,最終設計出同時具備高強度以及高韌性的階層化仿竹子梯度結構,在維持強度的情況下,韌性可大幅提升。 | zh_TW |
| dc.description.abstract | In recent years, the development of materials has been different from the past, and the structure of many organisms has become the inspiration for the design of new and high-performance materials. Natural materials with special structural elements enable creatures to adapt to the complex mechanical environment of nature. Most of these natural materials are composite from simple raw materials such as minerals and proteins. Among them, the gradient structure is one of the common performance optimization strategies in nature. The basic soft and hard materials can make their performance surpass man-made materials through the gradient distribution method. Therefore, this study will explore the effect of composite materials with gradient structure on mechanical properties.
This research aims to make materials with high toughness without losing strength. In order to simulate the mechanical properties of different gradient models, a two-dimensional Lattice Spring Model (LSM) and computer calculation methods are used to predict the crack development and mechanical properties of bio-inspired materials. The design of gradients in this thesis can be divided into structural gradients and material gradients. The structural gradient is to imitate the maldistribution of bamboo vascular bundles from the center to the surface. Then, the topology axis length ratio, the number of topology, the number of gradient layers, the horizontal and vertical distances of the topology, and the direction of the gradient are proposed. Theses six independent design parameters and the influence of different parameters on the mechanical properties were found, and the optimal parameter combination was proposed, also the development of the future gradient design direction with the structural change was summarized. In addition to the structural gradient, this thesis also fixed the topology to a uniform structure without gradient, and added the third kind of materials: Medium. With Medium material, the new strategy of gradient design is material gradient, which is compounded of three materials. In this study, material gradients are divided into Layer and Hierarchical material gradients. The Layer gradients include normal and transverse direction. In addition to propose the four Hierarchical gradient modes, this paper also combines three different hierarchical structures with gradient modes. Through these design changes, a material gradient structure with both high strength and high toughness is finally achieved, and the toughness can be greatly improved while maintaining the strength. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:59Z (GMT). No. of bitstreams: 1 ntu-109-R06521240-1.pdf: 13010337 bytes, checksum: 12d407eb0940c59c720766e9322b5ce4 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 論文架構 3 第二章 文獻回顧 4 2.1 大自然中的高性能生物材料 4 2.2 天然梯度材料與竹子結構 5 2.3 仿生材料的電腦模擬 8 第三章 研究方法 11 3.1 二維三角晶格彈簧模型模擬法 11 3.2 模擬參數 14 3.2.1 環境參數設定 14 3.2.2 模擬力場參數 14 3.2.3 裂縫破壞標準 15 3.3 模擬流程 15 3.4 仿竹子結構梯度模型 17 3.4.1 仿竹子結構梯度之設計參數 17 3.4.2仿竹子結構梯度之材料參數 20 3.5 材料梯度模型 20 3.5.1 三材層狀材料梯度模型 21 3.5.2 三材階層材料梯度模型 22 3.6 階層結構材料梯度模型 23 第四章 仿竹子梯度結構之結果與討論 25 4.1 仿竹子梯度結構之裂縫發展行為 25 4.1.1 初始裂縫及應力分層現象 26 4.1.2 裂縫偏轉 29 4.1.3 主裂縫 32 4.1.4 微裂縫集中 36 4.2 仿竹子梯度結構之機械性質 38 4.2.1 仿竹子梯度結構之孔洞數與機械性質 42 4.2.2 仿竹子梯度結構之梯度層數與機械性質 46 4.2.3 仿竹子梯度結構之梯度方向與機械性質 50 4.2.4 仿竹子梯度結構之拓樸軸長比與機械性質 53 4.2.5 仿竹子梯度結構之梯度連續性與機械性質 56 4.2.5.1 軸長比在不連續梯度中的機械性質 57 4.2.5.2 不連續梯度方向之性機械性質 59 4.2.5.3 與連續梯度比較結果 61 4.3 與無梯度結構之機械性質比較結果與討論 66 4.3.1 機械性質比較 66 4.3.2 裂縫發展比較 67 第五章 以材料變化為梯度設計之結果與討論 69 5.1材料梯度之應力分布 69 5.1.1 層狀材料梯度 69 5.1.2 階層材料梯度 71 5.2 材料梯度之裂縫分析 72 5.2.1 層狀材料梯度中Matrix與Medium的裂縫行為 72 5.2.2 階層材料梯度中Matrix與Medium的裂縫行為 73 5.3 不同材料梯度設計之機械性質 74 5.3.1 三材層狀材料梯度與雙材無梯度機械性質比較 75 5.3.2 四種階層材料梯度型式對機械性質影響 77 5.3.3 不同HR之階層材料梯度對機械性質影響 81 5.4 材料梯度之力學性能組合 83 5.5 結合結構與材料梯度設計之機械性質探討 84 5.6 仿竹子梯度設計之力學性能 88 第六章 結論與未來展望 89 6.1 結論 89 6.2 未來展望 91 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 裂縫發展 | zh_TW |
| dc.subject | 階層化材料梯度 | zh_TW |
| dc.subject | 結構梯度 | zh_TW |
| dc.subject | 竹子 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 二維三角晶格彈簧 | zh_TW |
| dc.subject | Composite materials | en |
| dc.subject | Material gradient | en |
| dc.subject | Lattice Spring Model | en |
| dc.subject | Structural gradient | en |
| dc.subject | Bamboo | en |
| dc.subject | Crack development | en |
| dc.subject | Mechanical properties | en |
| dc.title | 仿生梯度材料之機械性質模擬與分析 | zh_TW |
| dc.title | Simulation and Analysis of Mechanical Properties for Bio-inspired Gradient Structural Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊杉(Chuin-Shan Chen),陳柏宇(Po-Yu Chen),周佳靚(Chia-Ching Chou) | |
| dc.subject.keyword | 二維三角晶格彈簧,複合材料,機械性質,裂縫發展,竹子,結構梯度,階層化材料梯度, | zh_TW |
| dc.subject.keyword | Lattice Spring Model,Composite materials,Mechanical properties,Crack development,Bamboo,Structural gradient,Material gradient, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202000187 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-01-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 12.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
