請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66822
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文中(Wen-Jong Wu) | |
dc.contributor.author | Chun-Yu Chen | en |
dc.contributor.author | 陳俊宇 | zh_TW |
dc.date.accessioned | 2021-06-17T01:08:54Z | - |
dc.date.available | 2025-01-22 | |
dc.date.copyright | 2020-01-22 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-21 | |
dc.identifier.citation | [1] S. Roundy, P. K. Wright, and J. M. Rabaey, Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations. Kluwer Academic Publishers, 2004.
[2] Y. Huang, R. Doraiswami, M. Osterman, and M. Pecht, 'Energy harvesting using RF MEMS,' in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 1353-1358. [3] M. Marzencki, M. Defosseux, and S. Basrour, 'MEMS Vibration Energy Harvesting Devices With Passive Resonance Frequency Adaptation Capability,' Journal of Microelectromechanical Systems, vol. 18, no. 6, pp. 1444-1453, 2009. [4] E. T. Topal, H. Kulah, and A. Muhtaroglu, 'Thin film thermoelectric energy harvesters for MEMS micropower generation,' in 2010 International Conference on Energy Aware Computing, 2010, pp. 1-4. [5] F. Ishmanov, A. Malik, and S. Kim, 'Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): a comprehensive overview,' European Transactions on Telecommunications, vol. 22, pp. 151-167, 06/01 2011. [6] H. Liu, J. Zhong, C. Lee, S.-W. Lee, and L. Lin, 'A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications,' Applied Physics Reviews, vol. 5, no. 4, 2018. [7] Y. C. Shu, I. C. Lien, and W. J. Wu, 'An improved analysis of the SSHI interface in piezoelectric energy harvesting,' Smart Materials and Structures, vol. 16, no. 6, pp. 2253-2264, 2007. [8] C. Saha, A. Halder, and D. Ganguly, Basic Electronics: Principles and Applications. Cambridge University Press, 2018. [9] G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann, 'Damping as a result of piezoelectric energy harvesting,' Journal of Sound and Vibration, vol. 269, no. 3, pp. 991-1001, 2004/01/22/ 2004. [10] Y. K. Ramadass, 'Energy processing circuits for low-power applications,' Massachusetts Institute of Technology, 2009. [11] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, 'Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction,' Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 865-876, 2005/10/01 2005. [12] W. J. Wu, A. M. Wickenheiser, T. Reissman, and E. Garcia, 'Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers,' Smart Materials and Structures, vol. 18, no. 5, p. 055012, 2009/04/06 2009. [13] Y. K. Ramadass and A. P. Chandrakasan, 'An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor,' IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 189-204, 2010. [14] M. Lallart, W.-J. Wu, Y. Hsieh, and L. Yan, 'Synchronous inversion and charge extraction (SICE): a hybrid switching interface for efficient vibrational energy harvesting,' Smart Materials and Structures, vol. 26, no. 11, 2017. [15] M. Lallart, L. Garbuio, L. Petit, C. Richard, and D. Guyomar, 'Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2119-2130, 2008. [16] H. Shen, J. Qiu, H. Ji, K. Zhu, and M. Balsi, 'Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction,' Smart Materials and Structures, vol. 19, no. 11, p. 115017, 2010/09/28 2010. [17] J. Dicken, P. D. Mitcheson, I. Stoianov, and E. M. Yeatman, 'Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications,' IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4514-4529, 2012. [18] M. Lallart and D. Guyomar, 'Piezoelectric conversion and energy harvesting enhancement by initial energy injection,' Applied Physics Letters, vol. 97, pp. 014104-014104, 07/09 2010. [19] J. Liang, Y. Zhao, and K. Zhao, 'Synchronized Triple Bias-Flip Interface Circuit for Piezoelectric Energy Harvesting Enhancement,' IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 275-286, 2019. [20] T. Hehn et al., 'A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters,' IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2185-2198, 2012. [21] D. Kwon and G. A. Rincón-Mora, 'A Single-Inductor 0.35 µm CMOS Energy-Investing Piezoelectric Harvester,' IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2277-2291, 2014. [22] Z. Chen, M. Law, P. Mak, W. Ki, and R. P. Martins, 'Fully Integrated Inductor-Less Flipping-Capacitor Rectifier for Piezoelectric Energy Harvesting,' IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3168-3180, 2017. [23] S. Du, Y. Jia, C. Zhao, G. A. J. Amaratunga, and A. A. Seshia, 'A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting,' IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1733-1743, 2019. [24] S. Du and A. A. Seshia, 'An Inductorless Bias-Flip Rectifier for Piezoelectric Energy Harvesting,' IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2746-2757, 2017. [25] S. Javvaji, V. Singhal, V. Menezes, R. Chauhan, and S. Pavan, 'Analysis and Design of a Multi-Step Bias-Flip Rectifier for Piezoelectric Energy Harvesting,' IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2590-2600, 2019. [26] K. Cheng, H. Chen, M. Lallart, and W. Wu, 'A 0.25μm HV-CMOS Synchronous Inversion and Charge Extraction (SICE) Interface Circuit for Piezoelectric Energy Harvesting,' in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-4. [27] G. Gautschi, 'Piezoelectric Sensors,' 2002, pp. 73-91. [28] S.-C. Lin, 'High performance piezoelectric MEMS generators based on stainless steel substrate,' Doctoral dissertation, Department of Engineering Science and Ocean Engineering College of Engineering, National Taiwan University, Taipei, 2014. [29] C. T. Chen, Y. H. Fu, W. H. Tang, S. C. Lin, and W. J. Wu, The output power improvement and durability with different shape of MEMS piezoelectric energy harvester (SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring). SPIE, 2018. [30] C.-L. Kuo, S.-C. Lin, and W.-J. Wu, 'Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting,' Smart Materials and Structures, vol. 25, no. 10, p. 105016, 2016/09/16 2016. [31] Y. C. Kuo, J. T. Chien, W. T. Shih, C. T. Chen, S. C. Lin, and W. J. Wu, The fatigue behavior study of micro piezoelectric energy harvester under different working temperature (SPIE Smart Structures + Nondestructive Evaluation). SPIE, 2019. [32] C. B. Williams and R. B. Yates, 'Analysis of a micro-electric generator for microsystems,' Sensors and Actuators A: Physical, vol. 52, no. 1, pp. 8-11, 1996/03/01/ 1996. [33] D. Guyomar and M. Lallart, 'Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation,' Micromachines, vol. 2, no. 2, pp. 274-294, 2011. [34] H. A. C. Tilmans, 'Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems,' Journal of Micromechanics and Microengineering, vol. 6, no. 1, pp. 157-176, 1996/03/01 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66822 | - |
dc.description.abstract | 近年來,各式感測器、無線裝置等電子產品推陳出新,對於電量需求越來越高,大多仍需要使用電池充放電,以滿足使用者的用電需求,但在某些情境下,更換電池並非一件容易的事情,能源擷取系統因此而受到關注,其中微型壓電能量擷取器,在擷取環境中振動能時,擁有較高能量密度及高穩定度。
而壓電能量擷取技術需要透過擷取介面電路,方能有效率的獲得能源。在近幾年的研究中,被提出來的電路皆有各自的特性,例如:負載隔離、高轉換效率......等等,當壓電能源擷取器之輸出條件改變時,單一介面電路可能無法跟著其變動而調整架構或特性,故本論文嘗試結合各介面電路,透過開關切換控制,讓各架構能實踐在同一個電路上。 本論文提出之重構式壓電能源擷取介面電路,選用六個架構 (Switch-only rectifier, P-SSHI, S-SSHI, SICE, SECE, or S3BF) 以適應多種擷取狀況,除了能適應不同的震動源外,也能提升能源擷取效率,並採用TSMC 0.25 μm CMOS製程實現、驗證,提供壓電能源擷取系統一個全新的介面電路選擇。 | zh_TW |
dc.description.abstract | In recent years, there are more and more sensors combing with wireless transmis-sion capability have been invented and implemented into our daily life. As the result, the demand for micropower level is getting higher and higher. Traditionally, most of these products are powered by batteries. However, the replacement of batteries and the labor cost accompanied with cannot be ignored after a working period. To overcome this dilemma, scientists are trying to scavenge the energy from the environment. To make a comprehensive survey of energy resource, the vibration energy is the second place of energy sources with high energy density and high stability in the environment. To scavenge the vibration energy, the piezoelectric materials are used to fabricate the harvesters to convert vibration into electricity. However, the electricity is in form of AC after scavenging by harvesters which cannot be used for electronics devices di-rectly. Thus, the interface circuit required for an energy harvesting system. In this work, we try to design a universal synchronous switching circuit in integrated type fabricated by TSMC with 0.25-μm high voltage CMOS technology. It can be reconfig-ured into different topologies. With pre-programmed MCU, circuit topologies can be changed into different form to extract power for different excitation and loading con-dition by controlling the different patterns of signal sequence. Therefore, we realize a reconfigurable method that can optimize to power output by switching into a load-independent topology or optimal load topology based on application condition. The proposed circuit could be switched into different switching topologies, including Switch-only rectifier, P-SSHI, S-SSHI, SICE, SECE and S3BF. We propose and realize a reconfigurable interface circuit for piezoelectric energy extraction systems in this thesis that can be adopted for different applying condition. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:54Z (GMT). No. of bitstreams: 1 ntu-109-R06525106-1.pdf: 5713917 bytes, checksum: 9f18a011da4cb620f63ef2cc574009b0 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi 第1章 緒論 1 1.1 研究動機 1 1.2 論文目標 2 1.3 文獻回顧 2 1.4 論文架構 4 第2章 壓電能源簡介 5 2.1 壓電材料及壓電效應 5 2.1.1 壓電材料 5 2.1.2 正壓電效應 5 2.1.3 逆壓電效應 6 2.2 壓電能源擷取器 7 2.3 壓電元件等效電路 9 第3章 壓電能源擷取系統及介面電路 12 3.1 標準能量擷取介面電路 (Standard Energy Harvesting, SEH) 12 3.2 電感並聯式同步開關切換電路 (Parallel Synchronized Switching Harvesting on Inductor, P-SSHI) 19 3.3 電感串聯式同步開關切換電路 (Series Synchronized Switching Harvesting on Inductor, S-SSHI) 23 3.4 同步電荷擷取整流器 (Synchronous Electric Charge Extraction, SECE) 27 3.5 同步電壓反轉與電荷擷取電路(Synchronized Inversion and Charge Extraction, SICE) 30 3.6 並聯同步三段式翻轉電路 (parallel synchronized triple bias-flip, S3BF) 33 3.7 介面電路特性討論 36 第4章 重構式壓電能源擷取介面電路 37 4.1 設計考量與目標 37 4.2 電路架構 38 4.3 電路操作脈絡 39 4.3.1 單開關切換式整流電路 39 4.3.2 電感並聯式同步開關切換電路 (Parallel Synchronized Switching Harvesting on Inductor, P-SSHI) 40 4.3.3 電感串聯式同步開關切換電路 (Series Synchronized Switching Harvesting on Inductor, S-SSHI) 41 4.3.4 同步電荷擷取整流器 (Synchronous Electric Charge Extraction, SECE) 42 4.3.5 同步電壓反轉與電荷擷取電路(Synchronized Inversion and Charge Extraction, SICE) 43 4.3.6 並聯同步三段式翻轉電路 (Parallel Synchronized Triple Bias-Flip, S3BF) 45 4.4 電路模擬 46 4.4.1 單開關切換式整流電路 (Switch-only rectifier) 47 4.4.2 電感並聯式同步開關切換電路 (Parallel Synchronized Switching Harvesting on Inductor, P-SSHI) 48 4.4.3 電感串聯式同步開關切換電路 (Series Synchronized Switching Harvesting on Inductor, S-SSHI) 49 4.4.4 同步電荷擷取整流器 (Synchronous Electric Charge Extraction, SECE) 50 4.4.5 同步電壓反轉與電荷擷取電路(Synchronized Inversion and Charge Extraction, SICE) 51 4.4.6 並聯同步三段式翻轉電路 (parallel synchronized triple bias-flip, S3BF) 52 4.5 控制方法 53 第5章 電路實踐及量測結果 65 5.1 晶片佈局 65 5.2 量測設置與電路板設計 67 5.3 量測結果 68 5.3.1 單開關切換式整流電路 (Switch-only rectifier) 68 5.3.2 電感並聯式同步開關切換電路 (Parallel Synchronized Switching Harvesting on Inductor, P-SSHI) 69 5.3.3 電感串聯式同步開關切換電路 (Series Synchronized Switching Harvesting on Inductor, S-SSHI) 70 5.3.4 同步電荷擷取整流器 (Synchronous Electric Charge Extraction, SECE) 71 5.3.5 同步電壓反轉與電荷擷取電路(Synchronized Inversion and Charge Extraction, SICE) 72 5.3.6 並聯同步三段式翻轉電路 (parallel synchronized triple bias-flip, S3BF) 74 5.4 量測結果討論 75 第6章 結論與未來展望 79 6.1 結論 79 6.2 未來展望 79 Reference 80 附錄 84 | |
dc.language.iso | zh-TW | |
dc.title | 應用於壓電能源擷取之可重構式同步切換介面電路 | zh_TW |
dc.title | Reconfigurable Synchronous Switching Interface Cir-cuits for Piezoelectric Energy Harvesting | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳信樹(Hsin-Shu Chen),李坤彥(Kung-Yen Lee),謝秉璇(Ping-Hsuan Hsieh),梁俊睿(Jun-Rui Liang) | |
dc.subject.keyword | 能源擷取,壓電,重構式介面電路,同步切換介面電路, | zh_TW |
dc.subject.keyword | Energy harvesting,Piezoelectric,Reconfigurable interface circuit,Synchronous switch interface circuit, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU202000088 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 5.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。