Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66818
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺,郭柏齡
dc.contributor.authorPing-Yang Liuen
dc.contributor.author劉秉洋zh_TW
dc.date.accessioned2021-06-17T01:08:50Z-
dc.date.available2025-02-04
dc.date.copyright2020-02-04
dc.date.issued2019
dc.date.submitted2020-01-21
dc.identifier.citation[1] K. W. Wu, “Laser generated leaky acoustic waves for visualization during needle biopsy,” Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering and Computer Science National Taiwan University Master Thesis, pp. 1-60, 2016.
[2] K. W. Wu, Y. A. Wang, and P. C. Li, “Laser generated leaky acoustic waves for needle visualization,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 4, pp. 546-556, 2018.
[3] Y. A. Wang, “Beamforming for laser generated leaky acoustic waves for image guidance,” Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering and Computer Science National Taiwan University Master Thesis, pp. 1-111, 2019.
[4] J. E. Langer, Z. W. Baloch, C. McGrath, L. A. Loevner, and S. J. Mandel, “Thyroid nodule fine-needle aspiration,” Semin Ultrasound CT MR, vol. 33, no. 2, pp. 158-165, 2012.
[5] J. Hong, T. Dohi, M. Hashizume, K. Konishi, and N. Hata, “An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy,” Physics in Medicine & Biology, vol. 49, no. 3, pp. 441–455, 2004.
[6] G. A. Chapman, D. Johnson, and A. R. Bodenham, “Visualisation of needle position using ultrasonography,” Anaesthesia, vol. 61, no. 2, pp. 148-158, 2006.
[7] M. B. Rominger, K. Martini, E. Dappa, G. Puippe, V. Klingmüller, T. Frauenfelder, and S. J. Sanabria, “Ultrasound needle visibility in contrast mode imaging: An in vitro and ex vivo study,” Ultrasound Int Open, vol. 3, no. 2, pp. 82-88, 2017.
[8] C. Kim, T. N. Erpelding, K. Maslov, L. Jankovic, W. J. Akers, L. Song, S. Achilefu, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes,” Journal of biomedical optics, vol. 15, no. 4, pp. 046010-1-046010-4, 2010.
[9] D. Piras, C. Grijsen, P. Schutte, W. Steenbergen, and S. Manohar, “Photoacoustic needle: minimally invasive guidance to biopsy,” Journal of biomedical optics, vol. 18, no. 7, pp. 070502-1-070502-3, 2013.
[10] J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L.V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nature Medicine, vol. 18, no. 8, pp. 1297-1302, 2012.
[11] P. Wang, O. Ecabert, T. Chen, M. Wels, J. Rieber, M. Ostermeier, and D. Comaniciu, “Image-based co-registration of angiography and intravascular ultrasound images,” IEEE transactions on medical imaging, vol. 32, no. 12, pp. 2238-2249, 2013.
[12] S. B. Kutty, R. W. O. K. Rahmat, S. Kassim, H. Madzin, and H. Hamdan, “A review of 3D reconstruction of coronary arteries based on the co-registration of IVUS and coronary angiogram,” International Conference on Computer Assisted System in Health (CASH), pp. 1-5, 2014.
[13] Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation, vol. 119, no. 4, pp. 587-596, 2009.
[14] R. Januszek, K. Bartuś, R. Litwinowicz, A. Dziewierz, and L. Rzeszutko, “Coronary perforation of distal diagonal branch followed by prolonged recurrent cardiac tamponade finally resolved with pericardiotomy-the potential risk of hydrophilic guide-wires,” The open cardiovascular medicine journal, vol. 11, p. 61, 2017.
[15] K. Vijayalakshmi, D. Kelly, C. L. Chapple, D. Williams, R. Wright, M. J. Atewart, J. A. Hall, A. Sutton, A. Davies, J. Haywood, and M. A. deBelder, “Cardiac catheterisation: radiation doses and lifetime risk of malignancy,” Heart, vol. 93, no. 3, pp. 370-1, 2007.
[16] I. Pantos, G. Patatoukas, D. G. Katritsis, and E. Efstathopoulos, “Patient radiation doses in interventional cardiology procedures,' Current cardiology reviews, vol. 5, no. 1, pp. 1-11, 2009.
[17] C. E. Chambers, K. A. Fetterly, R. Holzer, P. J. Lin, J. C. Blankenship, S. Balter, and W. K. Laskey, “Radiation safety program for the cardiac catheterization laboratory,” Catheter Cardiovasc Interv, vol. 77, no. 4, pp. 546-56, 2011.
[18] R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, and D. J. Hawkes, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” The Lancet, vol. 362, no. 9399, pp. 1877-1882, 2003.
[19] A. E. Campbell-Washburn, T. Rogers, H. Xue, M. S. Hansen, R. J. Lederman, and A. Z. Faranesh, “Dual echo positive contrast bSSFP for real-time visualization of passive devices during magnetic resonance guided cardiovascular catheterization,” Journal of Cardiovascular Magnetic Resonance, vol. 16, no. 1, p. 88, 2014.
[20] C. B. Scruby, and L. E. Drain, Laser ultrasonics techniques and applications: CRC Press, 1990.
[21] A. M. Aindow, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Laser‐generated ultrasonic pulses at free metal surfaces,” The Journal of the Acoustical Society of America, vol. 69, no. 2, pp. 449-455, 1981.
[22] D. C. Worlton, Ultrasonic testing with Lamb waves: General Electric Co., Hanford Atomic Products Operation, Richland, Wash., 1956.
[23] D. N. Alleyne, and P. Cawley, “The interaction of Lamb waves with defects,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 39, no. 3, pp. 381-397, 1992.
[24] D. C. Gazis, “Three‐dimensional investigation of the propagation of waves in hollow circular cylinders. i. analytical foundation,” The Journal of the Acoustical Society of America, vol. 31, no. 5, pp. 568-573, 1959.
[25] F. Simonetti, “A guided wave technique for needle biopsy under ultrasound guidance,” SPIE Medical Imaging, pp. 726118-726118-8, 2009.
[26] M. Baltazar, R. Chona, C. Suh, and C. Burger, “Study on Laser-generated Ultrasonic Waves on Cylindrical Surfaces,” Experimental and Applied Mechanic, vol. 167, pp. 163–167, 2003.
[27] Ascension Technology Corporation, 3D Guidance – trakSTAR products, retrieved from https://www.ascension-tech.com/products/.
[28] C. G. Harris, and M. Stephens. “A combined corner and edge detector,” Alvey vision conference. vol. 15. no. 50, pp. 10-5244, 1988.
[29] M. I. Daoud, A. Alshalalfah, F. Awwad, and M. Al-Najar. “Freehand 3D ultrasound imaging system using electromagnetic tracking,” 2015 International Conference on Open Source Software Computing (OSSCOM), pp. 1-5, 2015.
[30] S. A. M. Baert, E. B. van de Kraats, T. van Walsum, M. A. Viergever, and W. J. Niessen, “Three-dimensional guide-wire reconstruction from biplane image sequences for integrated display in 3-D vasculature,” IEEE transactions on medical imaging, vol. 22, no. 10, pp. 1252-1258, 2003.
[31] T. Petković, R. Homan, and S. Lončarić, “Real-time 3D position reconstruction of guidewire for monoplane X-ray,” IEEE transactions on medical imaging, vol. 38, no. 3, pp. 211-223, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66818-
dc.description.abstract在現今冠狀動脈疾病診斷中,X光血管攝影以及血管內超音波為臨床診斷的標準方式,然而在診斷過程中輻射以及顯影劑等對人體有害。為了取代X光攝影,本論文利用超音波系統連結電磁波追蹤系統與雷射,在導絲上經由雷射照射激發超音波導波,並利用先前研究中提出的漏溢聲波波束成型技術補償導波於導絲上傳遞時間,使影像在超音波系統上進行即時成像時正確回復導絲尖端位置,結合電磁追蹤系統的六個自由度(six degrees of freedom, 6DOF)資訊,將此尖端位置利用座標轉換放至研究中架設的空間位置,最後重建出導絲尖端的三維路徑。所提出的方法畫面更新率可以達到每秒14張左右,在尖端判定演算法部分,能在不同角度條件下準確偵測到導絲尖端,然而利用漏溢聲波的優勢在於即使因角度過大無法準確辨識導絲本體,漏溢聲波尖端的訊號基本上仍能依照所提出的尖端偵測方式進行判定。實驗結果的最大角度為56.31度遠大於傳統超音波影像,尖端平均方均根誤差為1.5mm。結合電磁追蹤系統進行重建三維導絲路徑的結果,在橫向掃描的實驗中得到導絲尖端移動距離平均誤差2.06mm,在仰角軸向掃描的導絲尖端移動距離平均誤差為2.61mm,對比於以X光方式進行的三維重建有相仿的誤差,具有取代現今X光血管攝影的潛力。zh_TW
dc.description.abstractX-ray angiography and intravascular ultrasound are standard methods for clinical diagnosis of coronary artery disease, but the ionizing radiation and contrast medium are harmful to the human body. To replace the X-ray, we propose a new method for guidewire guidance by combining an ultrasound system, an electromagnetic tracking system, and a laser. Leaky acoustic waves (LAW) are generated by irradiating a laser pulse on the guidewire. Digital beamforming is then applied to perform real-time imaging of the guidewire. Combined with the six degrees of freedom (6DOF) data from the electromagnetic tracking system, the path of the guidewire tip can be determined after implementing coordinate transform. With the current setup, the frame rate can reach approximately 14 frames per second. According to our results, the maximum angle for the guidewire to be detected is around 56.31 degrees, which is larger than that achieved with traditional B-mode ultrasound imaging. The root means square error (RMSE) is 1.5 mm. The results of tracking of the guidewire path show that the mean errors are 2.06mm and 2.61mm, respectively. With similar errors for guidewire reconstruction with X-ray, the proposed method has the potential to replace X-ray angiography.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:08:50Z (GMT). No. of bitstreams: 1
ntu-108-R06945034-1.pdf: 5429749 bytes, checksum: 8f9453c84cbb6a41bc52d9057d6b81c0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xi
Chapter 1 緒論 1
1.1 研究動機 1
1.2 穿刺導引 2
1.2.1 超音波穿刺導引 2
1.2.2 光聲輔助超音波穿刺 4
1.3 心導管檢查術 6
1.3.1 冠狀動脈疾病 6
1.3.2 冠狀動脈疾病診斷 6
1.4 研究目標 10
1.5 論文架構 10
Chapter 2 漏溢聲波成像 11
2.1 漏溢聲波形成 11
2.1.1 光聲效應 11
2.1.2 雷射誘發超音波 11
2.1.3 超音波導波 12
2.1.4 漏溢聲波 14
2.2 導絲漏溢聲波波束成像 14
2.2.1 導絲 14
2.2.2 導絲漏溢聲波 15
2.2.3 波束成型技術 16
2.2.4 導絲尖端波束成型 17
2.3 先前研究:導絲尖端應用於不同角度定位 19
Chapter 3 實驗方法與實驗架構 24
3.1 系統架設 24
3.1.1 超音波影像系統 24
3.1.2 電磁追蹤系統 25
3.1.3 系統流程 26
3.2 即時影像中判定導絲尖端位置 29
3.2.1 漏溢聲波聲壓測量 29
3.2.2 即時成像 30
3.2.3 尖端判定 31
3.3 導絲尖端路徑重建 33
3.3.1 座標轉換 33
3.3.2 導絲路徑 34
Chapter 4 研究結果及問題討論 35
4.1 驗證導絲尖端判定 35
4.2 三維重建結果 38
4.2.1 座標系建立與探頭掃描方向 38
4.2.2 陣列與導絲平行掃描實驗 40
4.2.3 陣列與導絲垂直掃描實驗 43
4.2.4 血管仿體實驗 46
Chapter 5 分析與討論 46
5.1 誤差討論 49
5.1.1 尖端判定誤差 49
5.1.2 系統架設誤差 49
5.1.3 臨床可行性 51
5.2 探頭選擇 52
5.2.1 低頻探頭 52
5.2.2 二維探頭 54
5.3 雞胸肉實驗 55
Chapter 6 結論與未來展望 60
6.1 結論 60
6.2 未來展望 61
6.2.1 系統完整性 61
6.2.2 三維漏溢聲波影像 63
參考資料 65
dc.language.isozh-TW
dc.subject漏溢聲波zh_TW
dc.subject波束成型zh_TW
dc.subject電磁波追蹤系統zh_TW
dc.subject心導管檢查術zh_TW
dc.subjectcardiac catheterizationen
dc.subjectleaky acoustic wavesen
dc.subjectbeamformingen
dc.subjectelectromagnetic tracking systemen
dc.title應用漏溢聲波波束成像技術進行即時影像導引zh_TW
dc.titleBeamforming and Real-time Implementation of Laser-generated Leaky Acoustic Waves for Image Guidanceen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee沈哲州,謝寶育
dc.subject.keyword心導管檢查術,漏溢聲波,波束成型,電磁波追蹤系統,zh_TW
dc.subject.keywordcardiac catheterization,leaky acoustic waves,beamforming,electromagnetic tracking system,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202000231
dc.rights.note有償授權
dc.date.accepted2020-01-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved