請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66815完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Sheng-Che Yu | en |
| dc.contributor.author | 喻聖哲 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:08:48Z | - |
| dc.date.available | 2023-02-04 | |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-22 | |
| dc.identifier.citation | [1] D. Rittenhouse, 'Explanation of an Optical Deception,' Transactions of the American Philosophical Society, vol. 2, pp. 37-42, 1786, doi: 10.2307/1005164.
[2] J. Fraunhofer, 'Kurzer Bericht von den Resultaten neuerer Versuche über die Gesetze des Lichtes, und die Theorie derselben,' Annalen der Physik, vol. 74, no. 8, pp. 337-378, 1823/01/01 1823, doi: 10.1002/andp.18230740802. [3] H. Rowland, 'Preliminary Notice of the Results Accomplished in the Manufacture and Theory of Gratings for Optical Purposes1,' Nature, vol. 26, no. 661, pp. 211-213, 1882/06/01 1882, doi: 10.1038/026211b0. [4] R. W. Wood, 'On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,' Proceedings of the Physical Society of London, vol. 18, no. 1, pp. 269-275, 1902/06 1902, doi: 10.1088/1478-7814/18/1/325. [5] A. Hessel and A. A. Oliner, 'A New Theory of Wood’s Anomalies on Optical Gratings,' Appl. Opt., vol. 4, no. 10, pp. 1275-1297, 1965/10/01 1965, doi: 10.1364/AO.4.001275. [6] M. Neviere, R. Petit, and M. Cadilhac, 'About the theory of optical grating coupler-waveguide systems,' Optics Communications, vol. 8, no. 2, pp. 113-117, 1973/06/01/ 1973, doi: https://doi.org/10.1016/0030-4018(73)90150-8. [7] M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, 'Systematic study of resonances of holographic thin film couplers,' Optics Communications, vol. 9, no. 1, pp. 48-53, 1973/09/01/ 1973, doi: https://doi.org/10.1016/0030-4018(73)90333-7. [8] M. Gale, 'Diffraction, beauty and commerce,' Physics World, vol. 2, no. 10, pp. 24-29, 1989/10 1989, doi: 10.1088/2058-7058/2/10/20. [9] T. Levola and P. Laakkonen, 'Replicated slanted gratings with a high refractive index material for in and outcoupling of light,' Opt. Express, vol. 15, no. 5, pp. 2067-2074, 2007/03/05 2007, doi: 10.1364/OE.15.002067. [10] D. Taillaert, C. Harold, P. I. Borel, L. H. Frandsen, R. M. D. L. Rue, and R. Baets, 'A compact two-dimensional grating coupler used as a polarization splitter,' IEEE Photonics Technology Letters, vol. 15, no. 9, pp. 1249-1251, 2003, doi: 10.1109/LPT.2003.816671. [11] L. Carroll, D. Gerace, I. Cristiani, S. Menezo, and L. C. Andreani, 'Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics,' Opt. Express, vol. 21, no. 18, pp. 21556-21568, 2013/09/09 2013, doi: 10.1364/OE.21.021556. [12] J. Zou, Y. Yu, and X. Zhang, 'Single step etched two dimensional grating coupler based on the SOI platform,' Opt. Express, vol. 23, no. 25, pp. 32490-32495, 2015/12/14 2015, doi: 10.1364/OE.23.032490. [13] T. P. Caudell and D. W. Mizell, 'Augmented reality: an application of heads-up display technology to manual manufacturing processes,' in Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, 7-10 Jan. 1992 1992, vol. ii, pp. 659-669 vol.2, doi: 10.1109/HICSS.1992.183317. [14] Microsoft. 'Microsoft Hololens.' https://www.microsoft.com/en-us/hololens/ (accessed. [15] MagicLeap. 'Magic Leap One.' https://www.magicleap.com (accessed. [16] T. E. Levola, FI), Vallius, Tuomas (Espoo, FI), Saarikko, Pasi (Espoo, FI), 'Display system,' United States Patent Appl. 9372347, 2016. [Online]. Available: http://www.freepatentsonline.com/9372347.html [17] B. T. S. Schowengerdt, WA, US), Lin, Dianmin (Los Altos, CA, US), St. Hilaire, Pierre (Belmont, CA, US), 'MULTI-LAYER DIFFRACTIVE EYEPIECE,' United States Patent Appl. 20180052277, 2018. [Online]. Available: http://www.freepatentsonline.com/y2018/0052277.html [18] K. Guttag. 'Magic Leap Review Part 1 – The Terrible View Through Diffraction Gratings.' https://www.kguttag.com/2018/09/26/magic-leap-review-part-1-the-terrible-view-through-diffraction-gratings/ (accessed. [19] J. Chandezon, G. Raoult, and D. Maystre, 'A new theoretical method for diffraction gratings and its numerical application,' Journal of Optics, vol. 11, no. 4, pp. 235-241, 1980/07 1980, doi: 10.1088/0150-536x/11/4/005. [20] J. W. Strutt, 'On the dynamical theory of gratings,' Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 79, no. 532, pp. 399-416, 1907/08/02 1907, doi: 10.1098/rspa.1907.0051. [21] K. Knop, 'Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,' J. Opt. Soc. Am., vol. 68, no. 9, pp. 1206-1210, 1978/09/01 1978, doi: 10.1364/JOSA.68.001206. [22] J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, 'Multicoated gratings: a differential formalism applicable in the entire optical region,' J. Opt. Soc. Am., vol. 72, no. 7, pp. 839-846, 1982/07/01 1982, doi: 10.1364/JOSA.72.000839. [23] J. P. Plumey and G. Granet, 'Generalization of the coordinate transformation method with application to surface-relief gratings,' J. Opt. Soc. Am. A, vol. 16, no. 3, pp. 508-516, 1999/03/01 1999, doi: 10.1364/JOSAA.16.000508. [24] P. v. d. Berg and J. Fokkema, 'The Rayleigh hypothesis in the theory of diffraction by a cylindrical obstacle,' IEEE Transactions on Antennas and Propagation, vol. 27, no. 5, pp. 577-583, 1979, doi: 10.1109/TAP.1979.1142152. [25] A. V. Tishchenko, 'Numerical demonstration of the validity of the Rayleigh hypothesis,' Opt. Express, vol. 17, no. 19, pp. 17102-17117, 2009/09/14 2009, doi: 10.1364/OE.17.017102. [26] A. Tishchenko, 'Rayleigh Was Right: Electromagnetic Fields and Corrugated Interfaces,' Optics and Photonics News, vol. 21, 07/01 2010, doi: 10.1364/OPN.21.7.000050. [27] M. G. Moharam and T. K. Gaylord, 'Rigorous coupled-wave analysis of planar-grating diffraction,' J. Opt. Soc. Am., vol. 71, no. 7, pp. 811-818, 1981/07/01 1981, doi: 10.1364/JOSA.71.000811. [28] H. Kogelnik, 'Coupled wave theory for thick hologram gratings,' The Bell System Technical Journal, vol. 48, no. 9, pp. 2909-2947, 1969, doi: 10.1002/j.1538-7305.1969.tb01198.x. [29] L. Li, 'Use of Fourier series in the analysis of discontinuous periodic structures,' J. Opt. Soc. Am. A, vol. 13, no. 9, pp. 1870-1876, 1996/09/01 1996, doi: 10.1364/JOSAA.13.001870. [30] L. Li, 'Justification of matrix truncation in the modal methods of diffraction gratings,' Journal of Optics A: Pure and Applied Optics, vol. 1, no. 4, pp. 531-536, 1999/01/01 1999, doi: 10.1088/1464-4258/1/4/320. [31] Y. Kane, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,' IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966, doi: 10.1109/TAP.1966.1138693. [32] R. Collin, 'Reflection and transmission at a slotted dielectric interface,' Canadian Journal of Physics, vol. 34, pp. 398-411, 02/11 2011, doi: 10.1139/p56-047. [33] S. M. Rytov, 'Electromagnetic properties of a finely stratified medium,' Sov. Phys. JEPT Engl. Transl., vol. 2, pp. 466-475, 1956 1956. [34] I. Botten, M. Craig, R. McPhedran, J. Adams, and J. Andrewartha, 'The Dielectric Lamellar Diffraction Grating,' Optica Acta, vol. 28, 03/01 1981, doi: 10.1080/713820571. [35] A. V. Tishchenko, 'Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,' Optical and Quantum Electronics, vol. 37, no. 1, pp. 309-330, 2005/01/01 2005, doi: 10.1007/s11082-005-1188-2. [36] T. Clausnitzer et al., 'An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,' Opt. Express, vol. 13, no. 26, pp. 10448-10456, 2005/12/26 2005, doi: 10.1364/OPEX.13.010448. [37] T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, 'Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,' Applied optics, vol. 46, pp. 819-26, 03/01 2007, doi: 10.1364/AO.46.000819. [38] S. Li, C. Zhou, H. Cao, and J. Wu, 'Simple design of slanted grating with simplified modal method,' Opt. Lett., vol. 39, no. 4, pp. 781-784, 2014/02/15 2014, doi: 10.1364/OL.39.000781. [39] S. Li, C. Zhou, and W. Jia, 'Simplified modal method for slanted grating,' Optics Communications, vol. 383, pp. 182-185, 2017/01/15/ 2017, doi: https://doi.org/10.1016/j.optcom.2016.09.010. [40] I. Gushchin, 'The modal method : a reference method for modeling of the 2D metal diffraction gratings,' Université Jean Monnet - Saint-Etienne, 2011STET4010, 2011. [Online]. Available: https://tel.archives-ouvertes.fr/tel-00694044 [41] H. Haidner, J. T. Sheridan, and N. Streibl, 'Dielectric binary blazed gratings,' Appl. Opt., vol. 32, no. 22, pp. 4276-4278, 1993/08/01 1993, doi: 10.1364/AO.32.004276. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66815 | - |
| dc.description.abstract | 極化分光器是非常重要的光電元件,因可分離兩相互垂直偏振之特性,可以運用在光纖通訊之多工分光、光學顯微鏡、生化檢測等。近年來隨著半導體製程技術的進步,可見光波長等級的各種光電元件成為趨勢。次波長介電質光柵對於光的操控性有十分的競爭力,在製程上又相對簡單可以量產,其中一維傾斜光柵即在擴增實境頭戴式眼鏡領域展現其價值。
過去傾斜光柵並未受到重視,缺乏理論分析傾斜光柵結構,大多以數值模擬方法求得。本研究利用簡化模態法,快速推測出一維傾斜光柵結構參數,並以模擬軟體驗證,負一階穿透率可超過92%。後介一維傾斜光柵結構特性,引入極化分光器概念,將一維光柵延伸至二維光柵,應用對稱性,最終成功設計出高耦合效率且高消光比的垂直耦合型極化分光器。針對可見光532 nm之綠光,利用二維傾斜光柵,可以將單一偏振方向正向入射光柵平面,透過T-1,0階穿透傳播,耦合效率可達70%以上,消光比20 dB以上。 | zh_TW |
| dc.description.abstract | Numerous optical information processing, routing and imaging systems employ different polarization states to increase the information bandwidth and to reduce crosstalk between channels. Applications include, for example, free-space optical switching networks, optical microscopes and biosensors. In these systems, the polarizing beam splitter is a key element for separating two orthogonally polarized light beams. With the progress of semiconductors manufacturing technology, visible wavelength scale structure’s optoelectronic devices have become a rapidly growing field of research in recent years. Light manipulations capability of subwavelength dielectric gratings is substantial, manufacture wise are relatively easy and have the probability of mass production. The one dimensional slanted gratings used in augmented reality head-mounted display is one good example.
Few theoretical analyses are focusing on such slanted gratings in the pass due to the lack of interest, mostly, the geometry was calculated mainly via mass parameter scan and simulation. In this thesis, one dimensional slanted gratings geometry was predicted using the Simplified Modal Method, achieving a transmittance rate as high as 92%. We also present how, by the use polarizing beam splitters, we can promote this one dimensional result to two dimensions. The two dimensional slanted gratings we successfully designed and can achieve a coupling efficiency as high as 70%, with an extinction ratio above 20 dB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:48Z (GMT). No. of bitstreams: 1 ntu-109-R06941013-1.pdf: 7236918 bytes, checksum: 455d646d7c60254d5d60ee052ef918bb (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 緒論 12 1.1 文獻回顧 12 1.1.1 光柵研究與繞射理論 12 1.1.2 極化分光器 16 1.1.3 擴增實境頭戴式裝置簡介 23 1.2 研究動機 31 1.3 論文架構 32 Chapter 2 基本原理與研究方法 33 2.1 光柵基本原理 33 2.1.1 光柵繞射結構 33 2.1.2 理論模擬方法 35 2.2 簡化模態法 40 2.3 數值計算模擬軟體 46 Chapter 3 光柵結構設計與模擬 48 3.1 設計流程 48 3.2 一維二元光柵 50 3.2.1 光柵週期d=400 nm 50 3.2.2 光柵週期d=450 nm 53 3.2.3 光柵週期d=500 nm 55 3.2.4 一維二元光柵數據分析 57 3.3 一維傾斜光柵 59 3.3.1 光柵週期d=400 nm 59 3.3.2 光柵週期d=450 nm 61 3.3.3 光柵週期d=500 nm 62 3.3.4 一維傾斜光柵數據分析 64 3.4 二維二元光柵 66 3.4.1 光柵週期d=450 nm 70 3.4.2 光柵週期d=500 nm 72 3.4.3 二維二元光柵數據分析 74 3.5 二維傾斜光柵 74 3.5.1 光柵週期d=450 nm 77 3.5.2 光柵週期d=500 nm 81 3.5.3 二維傾斜光柵數據分析 83 Chapter 4 結論 87 REFERENCE 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 傾斜光柵 | zh_TW |
| dc.subject | 二維光柵 | zh_TW |
| dc.subject | 極化分光器 | zh_TW |
| dc.subject | polarization beam splitter | en |
| dc.subject | slanted grating | en |
| dc.subject | two dimensional grating | en |
| dc.title | 基於二維傾斜光柵的極化分光器之研究 | zh_TW |
| dc.title | A Polarization Beam Splitter Based on Two Dimensional Slanted Grating | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃嚴,蕭惠心 | |
| dc.subject.keyword | 傾斜光柵,二維光柵,極化分光器, | zh_TW |
| dc.subject.keyword | slanted grating,two dimensional grating,polarization beam splitter, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202000229 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-01-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 7.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
