請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺 | |
| dc.contributor.author | Li-Yu Lan | en |
| dc.contributor.author | 藍立宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:08:44Z | - |
| dc.date.available | 2021-02-04 | |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2020-01-22 | |
| dc.identifier.citation | [1] Heart Foundation (n. d.), Heart Treatments – Angiography and Stents, retrieved from https://www.heartfoundation.org.nz/your-heart/heart-treatments/angioplasty-and-stents.
[2] Mayo Clinic (May 2018), Coronary Artery Disease – Symptoms & Causes, retrieved from https://www.mayoclinic.org/diseases-conditions/coronary-artery-disease/symptoms-causes/syc-20350613. [3] A. D. Villa, E. Sammut, A. Nair, R. Rajani, R. Bonamini, and A. Chiribiri, “Coronary artery anomalies overview – The normal and the abnormal”, World Journal of Radiology, 8(6): 537-555, Jun. 2016. [4] S. Beier, J. Ormiston, M. Webster, J. Cater, S. Norris, P. Medrano-Gracia, A. Young, and B. Cowan, “Impact of bifurcation angle and other anatomical characteristics on blood flow – A computational study of non-stented and stented coronary arteries”, Journal of Biomechanics, 49(9): 1570-1582, Jun 2016. [5] S. Givehchi, M. J. Safari, S. K. Tan, M. N. B. M. Shah, F. B. M. Sani, R. R. Azman, Z. Sun, C. H. Yeong, K. H. Ng, and J. H. D. Wong, “Measurement of coronary bifurcation angle with coronary CT angiography – A phantom study”, European Journal of Medical Physics, 45: 198-204, Jan. 2018. [6] V. Subban, O. C. Raffel, N. Vasu, S. M. Victor, and M. A. Sankardas, “Intravascular ultrasound and optical coherence tomography for the assessment of coronary artery disease and percutaneous coronary intervention optimization – The basics”, Indian Heart Journal Interventions, 1(2): 71-94, Sep. 2018. [7] M. C. McDanie, P. Eshtehardi, F. J. Sawaya, J. S. Douglas Jr, and H. Samady, “Contemporary clinical applications of coronary intravascular ultrasound”, JACC Cardiovascular Interventions, 4(11): 1155-1167, Nov. 2011. [8] J. K. Min, M. Edwardes, F. Y. Lin, T. Labounty, J. W. Weinsaft, J. H. Choi, A, Delago, L. J. Shaw, D. S. Berman, and M. J. Budoff, “Relationship of coronary artery plaque composition to coronary artery stenosis severity – Results from the prospective multicenter ACCURACY trial”, Atherosclerosis, 219(2): 573-578, Dec. 2011. [9] M. G. Silk, and K. F. Bainton, “The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves”, Ultrasonics, 17(1): 11-19, Jan. 1979. [10] K. W. Wu, and P. C. Li, “Laser generated leaky acoustic waves for visualization during needle biopsy”, National Taiwan University Master Thesis, 1-60, Jul. 2016. [11] Y. A. Wang, and P. C. Li, “Beamforming for laser generated leaky acoustic waves for image guidance”, National Taiwan University Master Thesis, 1-111, Feb. 2019. [12] J. Zhou, E. Sebastian, V, Mangona, and D. Yan, “Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D guidance device – A preliminary performance study”, Medical Physics, 40(2): 1-9, Feb. 2013. [13] E. Lugez, “Electromagnetic tracking in ultrasound-guided high-dose-rate prostate brachytherapy”, Queen’s University Doctoral Dissertation, 1-138, Mar. 2016. [14] Ascension Technology Corporation (n. d.), 3D Guidance – trakSTAR products, retrieved from https://www.ascension-tech.com/products/. [15] Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment”, Medical Physics, 36(3): 876-892, Feb. 2009. [16] S. LaScalza, J. Arico, and R. Hughes, “Effect of metal and sampling rate on accuracy of Flock-of-birds electromagnetic tracking system”, Journal of Biomechanics, 36(1): 141-144, Sep. 2002. [17] V. V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques”, Virtual Reality: Research, Development, and Applications, 5(3): 169-182, Sep. 2000. [18] G. Zachmann, “Distortion correction of magnetic fields for position tracking”, IEEE Computer Society, 5(5): 213-220&251, Apr. 2001. [19] M. I. Daoud, A. L. Alshalalfah, and M. Al-Najar, “Freehand 3D ultrasound imaging system using electromagnetic tracking”, IEEE: 2015 International Conference on Open Source Software Computing (OSSCOM), Jan. 2016. [20] J. T. Dodge Jr, B. G. Brown, E. L. Bolson, and H. T. Dodge, “Lumen diameter of normal human coronary arteries – Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation”, Circulation, 86(1): 232-246, Apr. 1992. [21] Z. A. Fayad, V. Fuster, J. T. Fallon, T. Jayasundera, S, G, Worthley, G. Helft, J. G. Aguinaldo, J. J. Badimon, and S. K. Sharma, “Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging”, Circulation, 102(5): 506-510, Aug. 2000. [22] N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66, Jan. 1979. [23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning – Data Mining, Inference, and Prediction (Second edition), Springer, 501-512, Aug. 2008. [24] T. Kailath, A. H. Sayed, B. Hassibi, Linear Estimation, Pearson Education, 310-333, Jan. 2000. [25] D. I. Nikitichev, A. Barburas, K. McPherson, J. M. Mari, S. J. West, and A. E. Desjardins, “Construction of 3-dimensional printed ultrasound phantoms with wall-less vessels”, Journal of Ultrasound in Medicine, 35(6): 1333-1339, Jun. 2016. [26] S. S. M. Lai, B. Y. S. Yiu, A. K. K. Poon, and A. C. H. Yu, “Design of anthropomorphic flow phantoms based on rapid prototyping of compliant vessel geometries”, Ultrasound in medicine & biology, 39(9): 1654-1664, Sep. 2013. [27] C. K. Ho, A. J. Y. Chee, B. Y. S. Yiu, A. C. O. Tseng, K. W. Chow, and A. C. H. Yu, “Wall-less flow phantoms with tortuous vascular geometries –Design principles and a patient-specific model fabrication example”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(1): 25-38, Jan. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66810 | - |
| dc.description.abstract | 冠狀動脈疾病 (coronary artery disease, CAD) 是主要的心血管疾病之一,而在CAD的診斷中,血管攝影 (angiography) 與血管內超音波 (intravascular ultrasound, IVUS) 是臨床常見的診斷技術。然而,血管攝影過程中,具有輻射曝曬與顯影劑的副作用,以及二維投影影像的受限,而IVUS也只能觀察出內部血管的橫切面影像,無法完整的定位出導絲 (guidewire) 及所代表的血管確切位置。為了解決上述問題,本研究目的是開發基於漏溢聲波 (leaky acoustic waves, LAW) 之定位技術,預期藉由LAW成像方式獲取導絲的位置資訊。電磁追蹤系統 (electromagnetic tracking system, EMTS) 也將提供六個自由度 (six-degrees-of-freedom, 6-DOF) 之位置資訊,給予每張二維LAW影像對應的三維座標資訊,將搭配三維座標資訊的多張二維LAW影像進行疊合並建構出三維LAW影像,從而描繪出三維導絲行走路徑。LAW成像將於另一篇論文中進行介紹。此外,為了有效地模擬導絲在冠狀動脈行走之情形,本研究亦藉由來自掃描過程中EMTS提供的三維座標資訊,進行冠狀動脈的三維血管輪廓影像的建構。最終,由於三維LAW成像方式及三維血管輪廓影像兩者是基於不同之三維座標空間,為了明確地建構出完整的三維血管輪廓影像及導絲移動路徑相疊合的重建影像,本研究藉由座標轉換 (coordinates transformation) 運算之方式,將不同座標系進行三維座標空間的疊合,模擬出導絲在冠狀動脈中可能之三維行走路徑。最終利用本研究提出之影像建構方式,除了確保三維導絲行走路徑能完整地顯示在三維血管輪廓影像的空間內,三維血管輪廓影像在空間中的重建誤差最大達到1.90 mm左右。在未來,預期利用上述方式,在臨床上引導IVUS探頭,達到更有效率的心導管插入術診斷。 | zh_TW |
| dc.description.abstract | Coronary artery disease (CAD) is one of the major cardiovascular diseases. In the diagnosis of CAD, angiography and intravascular ultrasound (IVUS) are both commonly used. However, angiography poses the risk of exposure to ionizing radiation and the associated side effects of the contrast agents. Besides, it is limited to 2D projection imaging. On the other hand, IVUS can only visualize the cross-sections of interior vessel structures without the spatial information of the guidewire and the exact location relative to the vessels. To address these issues, the goal of this research is to develop alternative positioning techniques for interventional cardiology using leaky acoustic waves (LAW). An electromagnetic tracking system (EMTS) providing six-degrees-of-freedom (6-DOF) information is used to provide the 3D coordinates of each 2D LAW image. Multiple 2D LAW images are then combined to construct the 3D LAW image and depict the 3D traveling path of the guidewire. Note that the LAW images were obtained from a separate study. Besides, to simulate the 3D traveling path of the guidewire in the coronary artery, the proposed method also obtains the 3D position information from EMTS to construct 3D coronary artery morphology. Finally, since 3D LAW images and 3D coronary artery morphology are based on different 3D coordinate spaces, the coordinate transformation is conducted to overlay two separate areas into the same space. Finally, by the methods mentioned above, both the 3D traveling path of the guidewire and vessel parameters can be obtained. The maximum reconstruction error of 3D coronary artery morphology is about 1.90 mm. In the future, it is expected to guide the IVUS probe in clinical applications by the proposed methods, and more effective diagnoses in the cardiac catheterization can be obtained. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:44Z (GMT). No. of bitstreams: 1 ntu-108-R06945030-1.pdf: 4968977 bytes, checksum: 6598dc68073e23f0e2dba02249081620 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 緒論 1 1.1 心導管插入術及血管攝影技術 1 1.2 心導管插入術之適應症 - 冠狀動脈疾病 (CAD) 2 1.3 血管內超音波 (IVUS) 5 1.4 研究動機 6 1.5 三維定位及追蹤方法之比較 7 1.5.1 慣性感測器 8 1.5.2 機械手臂 9 1.5.3 光學追蹤系統 9 1.5.4 電磁追蹤系統 10 1.5.5 結論 10 Chapter 2 漏溢聲波 (LAW) 成像 11 2.1 超音波導波 11 2.2 漏溢聲波 (LAW) 11 2.3 波束成型法 (beamforming) 13 Chapter 3 電磁追蹤系統 (EMTS) 15 3.1 文獻探討 15 3.1.1 模擬導管插入之定位誤差分析 15 3.1.2 套用於超音波探頭掃描之定位誤差分析 17 3.1.3 結論 19 3.2 系統基本介紹 20 3.3 應用於研究之注意事項 21 Chapter 4 研究架構及流程 22 4.1 臨床應用 22 4.2 研究之系統架構 23 4.3 研究流程 25 Chapter 5 研究方法 26 5.1 座標轉換 26 5.2 三維超音波影像重建之方式 27 5.3 冠狀動脈仿體設計 29 5.4 影像處理應用於血管輪廓之偵測 31 5.4.1 影像分割 31 5.4.2 圓形偵測 32 5.5 影像重建之座標點優化 33 5.5.1 座標校正 33 5.5.2 卡爾曼濾波器的實現 35 Chapter 6 研究結果 39 6.1 EMTS準確性探討 39 6.1.1 靜態誤差分析 39 6.1.2 動態追蹤分析 41 6.2 座標校正實驗 43 6.2.1 實驗架構 43 6.2.2 驗證座標點的校正 46 6.3 三維影像重建之準確性探討 48 6.4 冠狀動脈三維重建影像及導絲路徑的疊合 51 6.4.1 三維座標系空間的建構 51 6.4.2 導絲尖端位置的決定 54 6.4.3 三維血管輪廓影像及導絲行走路徑之疊合 56 Chapter 7 問題與討論 58 7.1 座標校正方法之探討 58 7.2 阻塞血管區段的位置定義 60 7.2.1 利用血管輪廓橫切面進行定義 60 7.2.2 配合血管輪廓橫切面及縱切面進行定義 62 7.3 誤差討論 66 7.3.1 血管中心位置的誤判 66 7.3.2 座標歪斜及治具製作 66 Chapter 8 未來展望 68 8.1 不規則冠狀動脈之設計 68 8.1.1 冠狀動脈截面彎曲 68 8.1.2 冠狀動脈不規則結構 68 8.2 人體生理現象之模擬及量測 71 8.2.1 額外現象的產生及量測方法 71 8.2.2 研究階段的實現 72 REFERENCES 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 導絲 | zh_TW |
| dc.subject | 漏溢聲波 | zh_TW |
| dc.subject | 電磁追蹤系統 | zh_TW |
| dc.subject | 座標轉換 | zh_TW |
| dc.subject | 三維重建影像 | zh_TW |
| dc.subject | 3D reconstructed images | en |
| dc.subject | guidewire | en |
| dc.subject | leaky acoustic waves | en |
| dc.subject | electromagnetic tracking system | en |
| dc.subject | coordinate transformation | en |
| dc.title | 利用漏溢聲波及電磁追蹤技術實現導絲定位 | zh_TW |
| dc.title | EM tracking assisted guidewire position guidance using leaky acoustic waves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈哲州,謝寶育,劉建宏 | |
| dc.subject.keyword | 導絲,漏溢聲波,電磁追蹤系統,座標轉換,三維重建影像, | zh_TW |
| dc.subject.keyword | guidewire,leaky acoustic waves,electromagnetic tracking system,coordinate transformation,3D reconstructed images, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202000233 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-01-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
