請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66791
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈川洲(Chuan-Chou Shen) | |
dc.contributor.author | Hsien-Chen Tsai | en |
dc.contributor.author | 蔡獻禛 | zh_TW |
dc.date.accessioned | 2021-06-17T01:08:28Z | - |
dc.date.available | 2020-02-17 | |
dc.date.copyright | 2020-02-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-02 | |
dc.identifier.citation | Aitken, M. J. (1998) An introduction to optical dating. Oxford University Press: Oxford, 1-5.
Ban, F., Tan, M., Han, J. X., Zhai, Y. F., Zhao, X. H. & Sun, H. G. (2019) The fabric and its formation mechanism of porous-compact laminae in the stalagmite from Shihua Cave, Beijing. Chinese Science Bulletin, 64, 20, 2134-2140. Bateman, H. (1910) The solution of a system of differential equations occurring in the theory of radioactive transformations. In Proc. Cambridge Philos. Soc, 15, 423-427. Borsato, A., Quinif, Y., Bini, A. & Dublyansky, Y. (2003) Open-system alpine speleothems: implications for U-series dating and paleoclimate reconstructions. Studi Trent. Sci. Nat., Acta Geol., 80, 71-83. Broecker, W. S. & Thurber, D. L. (1965) 230Th/234U dating of marine coral and oolites from Florida and the Bahamas. Science 149, 58. Bryden, H. L. & Kinder, T. H. (1991) Steady two-layer exchange through the Strait of Gibraltar. Deep-sea Research, 38, Suppl. 1, S445-S463. Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X. G., Wang, Y. J., Zhang, R. & Wang, X. F. (2009) Ice Age Terminations. Science, 326, 248-252. Cheng, H., Edwards, R. L., Shen, C. C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X.G., Spötl, C., Wang, X. F. & Alexander Jr., E. C. (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372, 82-91. Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S. T., Kelly, M., Kathayat, G., Wang, X. F., Li, X. L., Kong, X. G., Wang, Y. J., Ning, Y. F. & Zhang, H. W. (2016) The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534, 640-648. Cherdyntsev, V. V. (1971) Uranium 234. Israel Programme for Scientific Translations. Editore, Jerusalem. Duan, W. H., Kotlia, B. S., & Tan, M. (2013) Mineral composition and structure of the stalagmite laminae from Chulerasim cave, Indian Himalaya, and the significance for palaeoclimatic reconstruction. Quaternary International, 298, 93-97. Ford D. C. & Williams, P. W. (1989) Karst geomorphology and hydrology. Unwin Hyman, London, 601. Frappier, A., Sahagian, D., Gonzalez, L. A. & Carpenter, S. J. (2002) El Nino events recorded by stalagmite carbon isotopes. Science, 298, 565. Frisia, S., Borsato, A., Fairchild, I. J. & Mcdermott, F. (2000) Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research, 70, 1183–1196. Gascoyne M., Ford, D. C. & Schwarcz, H. P. (1978) Uranium series dating and stable isotope studies of speleothems. Part 1: Theory and techniques. Trans. Brit. Cave Res. Assoc., 5, 91-112. Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E. and Hamelin, B. (2001). Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for C-13 variations in speleothems. Geochimica et Cosmochimica Acta, 65(20), 3443–3457. Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., & Van-Exter, S. (2003). Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421(6925), 833–837. Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Ramsey, C. B., Satow, C. & Roberts, A. P. (2012) Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature, 491, 744-747. Ivanovich, M. & Harmon, H. (1992) Uranium series disequilibrium. Application to Earth, Marine and Environmental Problems, 2nd edition. Oxford Science Publication, 910. Li. X. L., Cheng, H., Tan, L. C., Ban, F. M., Sinha, A., Duan, W. H., Li, H. Y., Zhang, H. W., Ning, Y. F., Kathayat, G. & Edwards, R. L. (2017) The East Asian summer monsoon variability over the last 145 years inferred from the Shihua Cave record, North China. Scientific Reports, 7(7078), 1-11. Marino, G., Rohling, E. J., Rodriguez-Sanz, L., Grant, K. M., Heslop, D., Roberts, A.P., Stanford, J. D. & Yu, J. (2015) Bipolar seesaw control on last interglacial sea level. Nature, 522, 197-201. Perrin, C., Prestimonaco, L., Servelle, G., Tilhac, R., Maury, M. & Cabrol, P. (2014) Aragonite–Calcite Speleothems: Identifying Original And Diagenetic Features. Journal of Sedimentary Research, 84, 245–269. Railsback, L. B., Dabous, A. A., Osmond, J. K. & Fleisher, C.J. (2002) Petrographic and geochemical screening of speleothems for U-series dating: An example from recrystallized speleothems from Wadi Sannur Cavern, Egypt. Journal of Cave and Karst Studies 64(2), 108-116. Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E. & Williams, F. (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508, 477-482. Sambridge, M., Grün, R. & Eggins, S. (2012) U-series dating of bone in an open system: The diffusion-adsorption-decay model. Quaternary Geochronology, 9, 42-53. Shen, C. C., Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff, J. A. & Thomas, R. B. (2003) Measurement of attogram quantities of Pa-231 in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Analytical Chemistry, 75, 1075-1079. Shen, C. C., Wu, C. C., Cheng, H., Edwards, R. L., Hsieh, Y. T., Gallet, S., Chang, C. C., Li, T. Y., Lam, D. D., Kano, A., Hori, M. & Spötl, C. (2012) High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71-86. Villemant, B. & Feuillet, N. (2003) Dating open systems by the 238U-234U-230Th method: application to Quaternary reef terraces. Earth and Planetary Science Letters, 210, 105-118. Wang, P. X., Tian, J. & Lourens, L. J. (2010) Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth and Planetary Science Letters, 290, 319-330. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66791 | - |
dc.description.abstract | 鈾釷定年是一項在岩石礦物中強大的定年工具,尤其被廣泛應用在碳酸鹽類的古氣候與古環境重建。鈾釷年紀是在封閉系統下由鈾系衰變當中之鈾-238、鈾-234及釷-230這三種核種的相對豐度而求得。然而,在核反彈效應(alpha-recoil)的過程中,鈾釷核種的遷移可能會使真實年紀有所偏差,尤其是對於老於60萬年的碳酸鹽標本來說。本研究採集了沉積時間介於60-90萬年前間位於義大利接近地中海北部,總長為84公分的一株石筍;29個位於不同層位的石筍樣本做了鈾釷含量與同位素組成的定量分析。我根據 (1)鈾釷定年理論、(2)利用海洋岩芯紀錄賦予石筍年紀的調整方法以及 (3)提出基於鈾釷核種在毫米尺度碳酸鈣晶格中擴散行為之新的假設,來推演鈾-234與釷-230的可能遷移。微米尺度的礦物分析也被用來觀察是否有後期沉積的碳酸鈣形成進而造成年紀的偏差。結果顯示這些倒序的年紀受到鈾-234與/或 釷-230的開放系統行為之影響。經由掃描式電子顯微鏡與光學顯微鏡的觀察發現晶格缺陷中孔洞愈多則核種遷移的程度愈大而造成年紀的偏差,在洞穴碳酸鹽晶格裂隙中的再結晶與高鎂質方解石礦脈也是導致鈾釷定年系統開放的原因。本研究指出我們在提供可信的鈾釷年紀之前,最重要的事情就是進行詳細的礦物觀察。 | zh_TW |
dc.description.abstract | U-Th dating has been one of powerful chronological tools on rocks and minerals. Especially, it was widely applied to carbonate-inferred paleoclimate and paleoenvironment reconstructions. U-Th dates are generally derived with relative abundances of three nuclides of 238U, 234U, and 230Th of the 238U decay series under a close system. However, movement of U-Th nuclides during alpha-recoil processes can bias the true ages, especially for carbonates with ages larger than 600 thousand years ago (ka). Here, I collected a 840-mm-long stalagmite with a deposition interval from 600 to 900 ka from Italy nearby the northern Mediterranean region. U-Th isotopic compositions and contents were determined at 29 depths. The determined U-Th ages are out of stratigraphic order and are not allowed to construct a robust age model. I addressed the possible migrations of nuclides of 230Th and 234U at depths based on (1) U-Th dating theory, (2) an age tuning method by matching stalagmite and marine proxy records, and (3) one hypothesis of similar diffusion behaviors for each nuclide on millimeter scale in carbonate lattice. Micro-domain mineral analyses were also conducted to evaluate age bias by the post-deposition formation of carbonate. Results show that reversal ages can be caused by open-system behaviors of nuclides 230Th and/or 234U. Observations by scanning electron microscopic and optical microscopic techniques show that more pores in the lattice defect can bring in more significant nuclide migrations and bias U-Th ages. The speleothem recrystallization and Mg-rich calcite veins in the lattice fractures are also the factors causing the U-Th dating open system. This study indicates that careful mineral inspection is the first step required to offer the fidelity of determined U-Th ages. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:28Z (GMT). No. of bitstreams: 1 ntu-109-R06224101-1.pdf: 3920130 bytes, checksum: 1d70fde0440abbc74dd87cd84351ebb0 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Abstract…………………………………………………………………………………I
摘要……………………………………………………………………………………..III Content………………………………………………………………………………...IV List of Figures………………………………………………………………………...VII List of Tables………………………………………………………………………..…IX Chapter 1 Introduction…………………………………………………………………1 1.1 Introduction of U-Th dating method……………………………………………….1 1.2 U-Th dating open system in old speleothem .……………………………………..4 1.3 Studies on U-Th dating open system and analytical approach…………………….6 Chapter 2 Regional Settings, samples and methods…………………………………..8 2.1 Regional settings and stalagmite sample…………………………………………..8 2.1.1 Location and hydrological settings……………………………………………8 2.1.2 Stalagmite sample………………………………………………………...…10 2.2 Methods………………………………………………………………………….12 2.2.1 Subsampling…………………………………………………………………12 2.2.2 Labware for U-Th dating chemical procedure…………………………….…12 2.2.3 U-Th dating chemistry……………………………………………………….12 2.2.4 U-Th instrumentation…………………………………………………….….17 2.2.5 Stable oxygen and carbon isotopic analysis………………………………….19 2.2.6 SEM observation and Raman spectral analysis…………….………………..19 Chapter 3 Results………………………………………………………………….…..23 3.1 SEM observation and Raman analytical results……………………………….…23 3.2 Oxygen and carbon stable isotope records……………………………………….30 3.3 U-Th dating results……………………………………………………………….31 Chapter 4 Discussion…………………………………………………………….…….34 4.1 BA18-7 stalagmite chronology and age model…………………………………...34 4.2 U and Th migration history reconstruction………………………………………39 4.2.1 Hypothesis…………………………………………………………………..39 4.2.2 Results of U and Th migration history reconstruction……………………....44 4.3 Possible 234U and 230Th migration history reconstruction ………………………..47 4.3.1 Age model……………………………………………………………….…..47 4.3.2 Fidelity evaluation of the hypothesis ……..……………………………..…..48 4.3.3 Calcite crystal structure…………………………………………………...…48 4.3.4 Recrystallization and Mg-rich calcite vein..…………………………………51 Chapter 5 Conclusion………………………………………………………………....54 References…………………………………………………………………………...…56 Appendix (I) δ18O and δ13C isotopic data…………………………………………….61 Appendix (II) U and Th migration data………………………………………..…….67 | |
dc.language.iso | en | |
dc.title | 老於60萬年洞穴石筍鈾釷定年開放系統行為之探討 | zh_TW |
dc.title | U-Th dating open system behaviors in speleothem older than 600 ka | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱美妃(Mei-Fei Chu),姜宏偉(Hong-Wei Chiang) | |
dc.subject.keyword | 鈾釷定年,鈾釷遷移,開放系統,晶格缺陷,石筍, | zh_TW |
dc.subject.keyword | U-Th dating,nuclide migration,open system,lattice defect,speleothem, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU202000300 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-03 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。