請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張惠雯(Hui-Wen Chang) | |
| dc.contributor.author | Chi-Fei Kao | en |
| dc.contributor.author | 高啟霏 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:08:18Z | - |
| dc.date.available | 2023-10-08 | |
| dc.date.copyright | 2020-02-05 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-03 | |
| dc.identifier.citation | Almazán, F., DeDiego, M. L., Sola, I., Zuñiga, S., Nieto-Torres, J. L., Marquez-Jurado, S., Andrés, G. and Enjuanes, L. (2013). Engineering a replication-competent, propagation-defective middle east respiratory syndrome coronavirus as a vaccine candidate. mBio, 4, e00650-00613.
Almazán, F., González, J. M., Pénzes, Z., Izeta, A., Calvo, E., Plana-Durán, J. and Enjuanes, L. (2000). Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences of the United States of America of the United States of America, 97, 5516-5521. Alonso, C., Goede, D. P., Morrison, R. B., Davies, P. R., Rovira, A., Marthaler, D. G. and Torremorell, M. (2014). Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Veterinary Research, 45, 73. Angelini, M. M., Akhlaghpour, M., Neuman, B. W. and Buchmeier, M. J. (2013). Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio, 4, e00524-00513. Annamalai, T., Lin, C. M., Gao, X., Liu, X., Lu, Z., Saif, L. J. and Wang, Q. (2017). Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain. Veterinary Research, 48, 61. Beall, A., Yount, B., Lin, C. M., Hou, Y., Wang, Q., Saif, L. and Baric, R. (2016). Characterization of a pathogenic full-length cdna clone and transmission model for porcine epidemic diarrhea virus strain PC22A. mBio, 7, e01451-01415. Bosch, B. J., van der Zee, R., de Haan, C. A. and Rottier, P. J. (2003). The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology, 77, 8801-8811. Bouvet, M., Lugari, A., Posthuma, C. C., Zevenhoven, J. C., Bernard, S., Betzi, S., Imbert, I., Canard, B., Guillemot, J. C., Lecine, P., Pfefferle, S., Drosten, C., Snijder, E. J., Decroly, E. and Morelli, X. (2014). Coronavirus nsp10, a critical co-factor for activation of multiple replicative enzymes. The Journal of Biological Chemistry, 289, 25783-25796. Casais, R., Thiel, V., Siddell, S. G., Cavanagh, D. and Britton, P. (2001). Reverse genetics system for the avian coronavirus infectious bronchitis virus. Journal of Virology, 75, 12359-12369. Chang, C. K., Hou, M. H., Chang, C. F., Hsiao, C. D. and Huang, T. H. (2014). The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Research, 103, 39-50. Chang, C. Y., Cheng, I. C., Chang, Y. C., Tsai, P. S., Lai, S. Y., Huang, Y. L., Jeng, C. R., Pang, V. F. and Chang, H. W. (2019). Identification of neutralizing monoclonal antibodies targeting novel conformational epitopes of the porcine epidemic diarrhoea virus spike protein. Scientific Report, 9, 2529. Chang, S. H., Bae, J. L., Kang, T. J., Kim, J., Chung, G. H., Lim, C. W., Laude, H., Yang, M. S. and Jang, Y. S. (2002). Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecles and Cells, 14, 295-299. Chasey, D. and Cartwright, S. F. (1978). Virus-like particles associated with porcine epidemic diarrhoea. Research in Veterinary Science, 25, 255-256. Chen, Y., Cai, H., Pan, J. a., Xiang, N., Tien, P., Ahola, T. and Guo, D. (2009). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106, 3484-3489. Chiou, H. Y., Huang, Y. L., Deng, M. C., Chang, C. Y., Jeng, C. R., Tsai, P. S., Yang, C., Pang, V. F. and Chang, H. W. (2017). Phylogenetic analysis of the spike (s) gene of the new variants of porcine epidemic diarrhoea virus in Taiwan. Transboundary and Emerging Disease, 64, 157-166. Cornillez-Ty, C. T., Liao, L., Yates, J. R., 3rd, Kuhn, P. and Buchmeier, M. J. (2009). Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. Journal of Virology, 83, 10314-10318. Costantini, V., Lewis, P., Alsop, J., Templeton, C. and Saif, L. J. (2004). Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates. Archive of Virology, 149, 957-974. Cottam, E. M., Whelband, M. C. and Wileman, T. (2014). Coronavirus NSP6 restricts autophagosome expansion. Autophagy, 10, 1426-1441. DeDiego, M. L., Alvarez, E., Almazan, F., Rejas, M. T., Lamirande, E., Roberts, A., Shieh, W. J., Zaki, S. R., Subbarao, K. and Enjuanes, L. (2007). A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. Journal of Virology, 81, 1701-1713. Deng, X., Hackbart, M., Mettelman, R. C., O'Brien, A., Mielech, A. M., Yi, G., Kao, C. C. and Baker, S. C. (2017). Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 114, E4251-e4260. Deng, X., StJohn, S. E., Osswald, H. L., O'Brien, A., Banach, B. S., Sleeman, K., Ghosh, A. K., Mesecar, A. D. and Baker, S. C. (2014). Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. Journal of Virology, 88, 11886-11898. Deng, X., van Geelen, A., Buckley, A. C., O'Brien, A., Pillatzki, A., Lager, K. M., Faaberg, K. S. and Baker, S. C. (2019). Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses. Journal of Virology, 93. Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D. and Baric, R. S. (2011). Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biology, 8, 270-279. Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Luo, R., Chen, H. and Xiao, S. (2014). Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. Journal of Virology, 88, 8936-8945. Domingo, E. (2002). Quasispecies Theory in Virology. Journal of Virology, 76, 463-465. Duarte, M., Gelfi, J., Lambert, P., Rasschaert, D. and Laude, H. (1993). Genome organization of porcine epidemic diarrhoea virus. Advances in Experimental Medicine and Biology, 342, 55-60. Eckerle, L. D., Lu, X., Sperry, S. M., Choi, L. and Denison, M. R. (2007). High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. Journal of Virology, 81, 12135-12144. Egloff, M. P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., Snijder, E. J., Gorbalenya, A. E., Cambillau, C. and Canard, B. (2004). The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 101, 3792-3796. Eigen, M. (1993). Viral quasispecies. Scientific American, 269, 42-49. Fan, B., Yu, Z., Pang, F., Xu, X., Zhang, B., Guo, R., He, K. and Li, B. (2017). Characterization of a pathogenic full-length cDNA clone of a virulent porcine epidemic diarrhea virus strain AH2012/12 in China. Virology, 500, 50-61. Fehr, A. R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D. K., Ahel, I. and Perlman, S. (2016). The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio, 7, e01721-01716. Fehr, A. R. and Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology, 1282, 1-23. Flint, J., Racaniello, V. R., Rall, G. F. and Skalka, A. M. (2015). Principles of virology, Volume II: pathogenesis & control, Fourth Edition. American Society of Microbiology. Gerdts, V. and Zakhartchouk, A. (2017). Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Veterinary Microbiology, 206, 45-51. Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K. and Baker, S. C. (2002). RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. Journal of Virology, 76, 3697-3708. Graham, R. L., Becker, M. M., Eckerle, L. D., Bolles, M., Denison, M. R. and Baric, R. S. (2012). A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Natural Medicine, 18, 1820-1826. Graham, R. L., Sims, A. C., Brockway, S. M., Baric, R. S. and Denison, M. R. (2005). The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. Journal of Virololgy, 79, 13399-13411. Haijema, B. J., Volders, H. and Rottier, P. J. (2003). Switching species tropism: an effective way to manipulate the feline coronavirus genome. Journal of Virololgy, 77, 4528-4538. Hou, Y., Ke, H., Kim, J., Yoo, D., Su, Y., Boley, P., Chepngeno, J., Vlasova, A. N., Saif, L. J. and Wang, Q. (2019a). Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2'-O-methyltransferase and the endocytosis signal of the spike protein. Journal of Virololgy, 93. Hou, Y., Lin, C. M., Yokoyama, M., Yount, B. L., Marthaler, D., Douglas, A. L., Ghimire, S., Qin, Y., Baric, R. S., Saif, L. J. and Wang, Q. (2017). Deletion of a 197-amino-acid region in the n-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets. Journal of Virololgy, 91. Hou, Y., Meulia, T., Gao, X., Saif, L. J. and Wang, Q. (2019b). Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs. Journal of Virology, 93, e01758-01718. Hou, Y. and Wang, Q. (2019). Emerging highly virulent porcine epidemic diarrhea virus: molecular mechanisms of attenuation and rational design of live attenuated vaccines. International Journal of Molecular Science, 20. Hruby, D. E. (1990). Vaccinia virus vectors: new strategies for producing recombinant vaccines. Clinical Microbiology Reviews, 3, 153-170. Imbert, I., Guillemot, J. C., Bourhis, J. M., Bussetta, C., Coutard, B., Egloff, M. P., Ferron, F., Gorbalenya, A. E. and Canard, B. (2006). A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. The Embo Journal, 25, 4933-4942. Ivanov, K. A. and Ziebuhr, J. (2004). Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. Journal of Virology, 78, 7833-7838. Jengarn, J., Wongthida, P., Wanasen, N., Frantz, P. N., Wanitchang, A. and Jongkaewwattana, A. (2015). Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone. Journal of General Virology, 96, 2206-2218. Jimenez-Guardeno, J. M., Regla-Nava, J. A., Nieto-Torres, J. L., DeDiego, M. L., Castano-Rodriguez, C., Fernandez-Delgado, R., Perlman, S. and Enjuanes, L. (2015). Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathogens, 11, e1005215. Jung, K. and Saif, L. J. (2015). Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. The Veterinary Journal, 204, 134-143. Jung, K., Wang, Q., Scheuer, K. A., Lu, Z., Zhang, Y. and Saif, L. J. (2014). Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerging Infectious Diseases, 20, 668-671. Kao, C. F., Chiou, H. Y., Chang, Y. C., Hsueh, C. S., Jeng, C. R., Tsai, P. S., Cheng, I. C., Pang, V. F. and Chang, H. W. (2018). The characterization of immunoprotection induced by a cDNA clone derived from the attenuated taiwan porcine epidemic diarrhea virus Pintung 52 strain. Viruses, 10. Koetzner, C. A., Parker, M. M., Ricard, C. S., Sturman, L. S. and Masters, P. S. (1992). Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. Journal of Virology, 66, 1841-1848. Kuo, L., Koetzner, C. A. and Masters, P. S. (2016). A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging. Virology, 494, 100-107. Kuo, L. and Masters, P. S. (2003). The small envelope protein e is not essential for murine coronavirus replication. Journal of Virology, 77, 4597-4608. Langel, S. N., Paim, F. C., Alhamo, M. A., Buckley, A., Van Geelen, A., Lager, K. M., Vlasova, A. N. and Saif, L. J. (2019). Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets. Frontiers in Immunology, 10, 727. Langel, S. N., Paim, F. C., Lager, K. M., Vlasova, A. N. and Saif, L. J. (2016). Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Research, 226, 93-107. Lee, C. (2015). Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virology Journal, 12, 193. Li, C., Li, Z., Zou, Y., Wicht, O., van Kuppeveld, F. J., Rottier, P. J. and Bosch, B. J. (2013). Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination. PLoS One, 8, e69997. Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3, 237-261. Li, J., Jin, Z., Gao, Y., Zhou, L., Ge, X., Guo, X., Han, J. and Yang, H. (2017). Development of the full-length cDNA clones of two porcine epidemic diarrhea disease virus isolates with different virulence. PLoS One, 12, e0173998. Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X. and He, Q. (2012). New variants of porcine epidemic diarrhea virus, China, 2011. Emerging Infectious Disease, 18, 1350-1353. Li, W., van Kuppeveld, F. J. M., He, Q., Rottier, P. J. M. and Bosch, B. J. (2016). Cellular entry of the porcine epidemic diarrhea virus. Virus Research, 226, 117-127. Liang, J. Q., Fang, S., Yuan, Q., Huang, M., Chen, R. A., Fung, T. S. and Liu, D. X. (2019). N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis. Virology, 531, 48-56. Lim, Y. X., Ng, Y. L., Tam, J. P. and Liu, D. X. (2016). Human coronaviruses: a review of virus-host interactions. Diseases, 4. Lin, C. M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Hu, H., Saif, L. J. and Wang, Q. (2015). Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection. Veterinary Research, 46, 134. Lin, C. M., Ghimire, S., Hou, Y., Boley, P., Langel, S. N., Vlasova, A. N., Saif, L. J. and Wang, Q. (2019). Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Veterinary Research, 15, 26. Lin, C. M., Hou, Y., Marthaler, D. G., Gao, X., Liu, X., Zheng, L., Saif, L. J. and Wang, Q. (2017). Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage. Veterinary Microbiology, 201, 62-71. Lin, C. N., Chung, W. B., Chang, S. W., Wen, C. C., Liu, H., Chien, C. H. and Chiou, M. T. (2014). US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013-2014. The Journal of Veterinary Medical Science, 76, 1297-1299. Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., Li, T., Yan, J. and Gao, G. F. (2010). The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. The Journal of Infectious Diseases, 202, 1171-1180. Liwnaree, B., Narkpuk, J., Sungsuwan, S., Jongkaewwattana, A. and Jaru-Ampornpan, P. (2019). Growth enhancement of porcine epidemic diarrhea virus (PEDV) in Vero E6 cells expressing PEDV nucleocapsid protein. PLoS One, 14, e0212632. Lohse, L., Krog, J. S., Strandbygaard, B., Rasmussen, T. B., Kjaer, J., Belsham, G. J. and Botner, A. (2017). Experimental infection of young pigs with an early european strain of porcine epidemic diarrhoea virus and a recent US strain. Transboundary and Emerging Disease, 64, 1380-1386. Ma, Y., Tong, X., Xu, X., Li, X., Lou, Z. and Rao, Z. (2010). Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus. Protein & Cell, 1, 688-697. Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang, R. and Rao, Z. (2015). Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 112, 9436-9441. Masters, P. S. (2006). The molecular biology of coronaviruses, pp. 193-292. McBride, R., van Zyl, M. and Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6, 2991-3018. Menachery, V. D., Debbink, K. and Baric, R. S. (2014). Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Research, 194, 191-199. Menachery, V. D., Gralinski, L. E., Mitchell, H. D., Dinnon, K. H., 3rd, Leist, S. R., Yount, B. L., Jr., Graham, R. L., McAnarney, E. T., Stratton, K. G., Cockrell, A. S., Debbink, K., Sims, A. C., Waters, K. M. and Baric, R. S. (2017). Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. mSphere, 2. Mendez, A., Smerdou, C., Izeta, A., Gebauer, F. and Enjuanes, L. (1996). Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: packaging and heterogeneity. Virology, 217, 495-507. Mielech, A. M., Deng, X., Chen, Y., Kindler, E., Wheeler, D. L., Mesecar, A. D., Thiel, V., Perlman, S. and Baker, S. C. (2015). Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. Journal of Virology, 89, 4907-4917. Naskalska, A., Dabrowska, A., Szczepanski, A., Milewska, A., Jasik, K. P. and Pyrc, K. (2019). Membrane protein of human coronavirus NL63 is responsible for interaction with the adhesion receptor. Journal of Virology, 93. Ogando, N. S., Ferron, F., Decroly, E., Canard, B., Posthuma, C. C. and Snijder, E. J. (2019). The curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Frontiers in Microbiology, 10. Oostra, M., de Haan, C. A., de Groot, R. J. and Rottier, P. J. (2006). Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. Journal of Virology, 80, 2326-2336. Ortego, J., Ceriani, J. E., Patino, C., Plana, J. and Enjuanes, L. (2007). Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology, 368, 296-308. Pang, H., Liu, Y., Han, X., Xu, Y., Jiang, F., Wu, D., Kong, X., Bartlam, M. and Rao, Z. (2004). Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. Journal of General Virology, 85, 3109-3113. Pensaert, M. B. and de Bouck, P. (1978). A new coronavirus-like particle associated with diarrhea in swine. Archive of Virology, 58, 243-247. Racaniello, V. R. and Baltimore, D. (1981). Cloned poliovirus complementary DNA is infectious in mammalian cells. Science, 214, 916-919. Risco, C., Antón, I. M., Suñé, C., Pedregosa, A. M., Martín-Alonso, J. M., Parra, F., Carrascosa, J. L. and Enjuanes, L. (1995). Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. Journal of Virology, 69, 5269-5277. Saif, L. J., Wang, Q., Vlasova, A.N., Jung, K. and Xiao, S. (2019). Coronaviruses. In: Diseases of Swine, L. A. K. J.J. Zimmerman, A. Ramirez, K.J. Schwartz, G.W. Stevenson and J. Zhang, Ed, pp. 488-523. Sakai, Y., Kawachi, K., Terada, Y., Omori, H., Matsuura, Y. and Kamitani, W. (2017). Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology, 510, 165-174. Sanjuan, R. and Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and Molecular Life Sciences, 73, 4433-4448. Sato, T., Oroku, K., Ohshima, Y., Furuya, Y. and Sasakawa, C. (2018). Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan. Virology Journal, 15, 28. Schoeman, D. and Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology Journal, 16, 69. Schulz, L. L. and Tonsor, G. T. (2015). Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States. Journal of Animal Science, 93, 5111-5118. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., Tachiiri, Y. and Simon, M. (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences of the United States of America, 89, 8794-8797. Stobart, C. C. and Moore, M. L. (2014). RNA virus reverse genetics and vaccine design. Viruses, 6, 2531-2550. Sun, D. B., Feng, L., Shi, H. Y., Chen, J. F., Liu, S. W., Chen, H. Y. and Wang, Y. F. (2007). Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virologica, 51, 149-156. Sztuba-Solinska, J., Stollar, V. and Bujarski, J. J. (2011). Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology, 412, 245-255. Thiel, V., Herold, J., Schelle, B. and Siddell, S. G. (2001). Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. Journal of General Virology, 82, 1273-1281. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. and Andino, R. (2006). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439, 344-348. Vignuzzi, M., Wendt, E. and Andino, R. (2008). Engineering attenuated virus vaccines by controlling replication fidelity. Nature Medicine, 14, 154-161. Wang, K., Lu, W., Chen, J., Xie, S., Shi, H., Hsu, H., Yu, W., Xu, K., Bian, C., Fischer, W. B., Schwarz, W., Feng, L. and Sun, B. (2012). PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Letters, 586, 384-391. Wang, L., Byrum, B. and Zhang, Y. (2014). New variant of porcine epidemic diarrhea virus, United States, 2014. Emerging Infectious Disease, 20, 917-919. Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Jin, X., Ge, X., Shi, Z., Ahola, T., Chen, Y. and Guo, D. (2015). Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. Journal of Virology, 89, 8416-8427. Wang, Y. D., Sin, W. Y., Xu, G. B., Yang, H. H., Wong, T. Y., Pang, X. W., He, X. Y., Zhang, H. G., Ng, J. N., Cheng, C. S., Yu, J., Meng, L., Yang, R. F., Lai, S. T., Guo, Z. H., Xie, Y. and Chen, W. F. (2004). T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. Journal of Virology, 78, 5612-5618. Weiss, R. A. (2002). Virulence and pathogenesis. Trends in Microbiology, 10, 314-317. Weiss, S. R. and Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews, 69, 635-664. Wilson, L., McKinlay, C., Gage, P. and Ewart, G. (2004). SARS coronavirus E protein forms cation-selective ion channels. Virology, 330, 322-331. Wrapp, D. and McLellan, J. S. (2019). The 3.1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation. Journal of Virology, 93, e00923-00919. Wu, H. Y. and Brian, D. A. (2010). Subgenomic messenger RNA amplification in coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 107, 12257-12262. Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., Baker, S. C., Feng, L. and Chen, Z. (2013). The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. Journal of General Virology, 94, 1554-1567. Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S. G. and Ding, J. (2003). Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Research, 31, 7117-7130. Yong, C. Y., Ong, H. K., Yeap, S. K., Ho, K. L. and Tan, W. S. (2019). Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus. Frontiers in Microbiology, 10, 1781. Yount, B., Curtis, K. M. and Baric, R. S. (2000). Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. Journal of Virology, 74, 10600-10611. Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M. and Rao, Z. (2005). Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nature Structural & Molecular Biology, 12, 980-986. Zhang, Q., Ke, H., Blikslager, A., Fujita, T. and Yoo, D. (2018). Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling. Journal of Virology, 92, e01677-01617. Zhang, Q., Shi, K. and Yoo, D. (2016). Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology, 489, 252-268. Zou, D., Xu, J., Duan, X., Xu, X., Li, P., Cheng, L., Zheng, L., Li, X., Zhang, Y., Wang, X., Wu, X., Shen, Y., Yao, X., Wei, J., Yao, L., Li, L., Song, B., Ma, J., Liu, X., Wu, Z., Zhang, H. and Cao, H. (2019). Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy. Veterinary Microbiology, 235, 209-219. Zuniga, S., Cruz, J. L., Sola, I., Mateos-Gomez, P. A., Palacio, L. and Enjuanes, L. (2010). Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. Journal of Virology, 84, 2169-2175. Zuniga, S., Sola, I., Alonso, S. and Enjuanes, L. (2004). Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. Journal of Virology, 78, 980-994. Züst, R., Cervantes-Barragán, L., Kuri, T., Blakqori, G., Weber, F., Ludewig, B. and Thiel, V. (2007). Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathogens, 3, e109. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66776 | - |
| dc.description.abstract | 高毒力第二基因型(genogroup 2; G2)豬流行性下痢病毒(Porcine epidemic diarrhea virus; PEDV)感染自2010年末爆發以來,已成為當前最致命且具經濟重要性的豬隻病毒之一。PEDV會造成嘔吐、下痢,並在新生仔豬引起將近百分之百的死亡率,造成全球養豬產業嚴重的經濟損失。過去10年間科學家已慢慢對這個重要豬隻病原有了更進一步的了解,並證實利用活毒減毒疫苗誘發優良的母體免疫是避免新生仔豬遭受PEDV感染的最佳策略。然而,對於PEDV的分子致病機轉、特定病毒基因之功能、或是如何制定合理的疫苗研發方針都仍有待釐清。本篇論文的目標是構築G2 PEDV的反向遺傳系統,並藉此平台研究PEDV的分子減毒機制,以期能應用於研制有效且安全之PEDV減毒活毒疫苗。
本論文第一階段針對一高毒力台灣G2b PEDV分離株(PEDV Pintung 52 passage 5, PEDVPT-P5)及其細胞培養減毒株PEDVPT-P96進行病毒毒力、誘發之宿主免疫保護及序列分析。在五週齡的田間豬模式中,經口給予PEDVPT-P5會誘發豬隻嚴重的水樣下痢與早發且可持續長達26天之糞便排毒。PEDVPT-P96則幾乎不導致任何下痢,其糞便排毒起始時間與排毒高峰的排毒量也都相對較低。經口給予兩種病毒皆可誘發對抗PEDVPT-P5口服攻毒的保護力,唯PEDVPT-P96的保護力較PEDVPT-P5略低。基因組全長分析顯示兩病毒序列長度一致,共有23個核苷酸序列與19個胺基酸序列差異;其中,9個胺基酸變異發生在棘蛋白(Spike; S)基因,特別是S2亞基的區域。上述結果顯示PEDVPT-P96較PEDVPT-P5減毒。儘管有多個胺基酸變異發生於具免疫顯性之棘蛋白,PEDVPT-P96仍保有其免疫原性。 本論文第二部分利用PEDVPT-P96之基因組為骨架以建立PEDV反向遺傳學系統,並以核糖核酸轉染的方法,成功構築了第一個減毒G2 PEDV的感染性選植株。所拯救的重組病毒iPEDVPT-P96與原始之PEDVPT-P96在活體內外皆具有相近之表型,但在五週齡田間豬之攻毒模式中iPEDVPT-P96表現較為減毒。利用次世代定序分析每個核苷酸位點之複雜度,結果顯示iPEDVPT-P96擁有明顯較低之類種(quasispecies)程度,可能與兩病毒表型不完全一致與iPEDVPT-P96較為減毒有關。感染性選殖株iPEDVPT-P96可望將有助研究PEDVPT-P96之減毒決定位,並可用做建立以iPEDVPT-P96作為載體之多價疫苗的研發。 本論文的第三部分旨在研究棘蛋白在PEDVPT 52株減毒過程中的角色。我們建立了四個感染性選植株,分別是高毒力之iPEDVPT-P5、減毒之iPEDVPT-P96,以及將棘蛋白基因互換後之iPEDVPT-P5-96S與iPEDVPT-P96-5S。利用七日齡仔豬進行攻毒試驗,我們發現將強毒iPEDVPT-P5的棘蛋白置換到減毒iPEDVPT-P96的骨架會導致iPEDVPT-P96回毒,造成近乎一致的臨床症狀、糞便排毒以及高死亡率。相反的,同樣的處理卻只讓置換成減毒棘蛋白之iPEDVPT-P5-96S產生部分減毒,並導致較減毒iPEDVPT-P96更為嚴重之組織病變與死亡率。上述結果顯示PEDVPT-P96的減毒主要由棘蛋白基因上的變異造成,但其他基因也在決定毒力上亦扮演一定的角色。 在本研究中,我們成功地建立了G2b PEDV反向遺傳系統,並展示了其用於PEDV減毒機制研究的可行性。本篇論文中所建立之技術與相關發現將有助於PEDV致病機轉之探討,並可實際用於研發有效且安全之PEDV疫苗。 | zh_TW |
| dc.description.abstract | The highly virulent genogroup 2 (G2) porcine epidemic diarrhea virus (PEDV) has become one of the deadliest and economically important swine viruses since its emergence in late 2010. PEDV causes vomiting, diarrhea, and up to 100% mortality rate in neonatal piglets, resulting in tremendous economic losses to the global pig industry. After a decade of efforts aiming to better characterize this important swine pathogen, it is now evident that the desirable maternal immunity induced by live attenuated vaccines (LAV) is essential to provide the neonatal piglets with efficacious protection against PEDV. However, knowledge about the molecular basis of PEDV pathogenesis, specific gene function, and the rational design of PEDV vaccine is yet to be elucidated. Thus, the aim of this dissertation was to develop a reverse genetic system for the G2 PEDV in order to study the molecular mechanism of PEDV attenuation, and thereby propose rational design of safe and effective LAV against PEDV.
The first objective was to characterize the genetic, immunoprotective and virulent differences between two autologous Taiwan G2b PEDV strains, the highly virulent PEDV Pintung 52 strain passage 5 (PEDVPT-P5) and its cell culture-adaptive, attenuated counterpart PEDVPT-P96. In the 5-week-old conventional piglet model, oral inoculation with PEDVPT-P5 caused severe watery diarrhea and an early-onset fecal viral shedding that persisted for 26 days. The PEDVPT-P96 induced no to minimal diarrhea and a delayed-onset fecal viral shedding with a lower peak viral load. Both viruses were able to generate protection against challenge with PEDVPT-P5, although the protective efficacy elicited by PEDVPTP96 was slightly lower than that induced by PEDVPT-P5. Sequence analysis of the complete genome of both viruses revealed 23 nucleotide changes and 19 resultant amino acid (a.a.) substitutions with no deletion or insertion. Amongst them, 9 a.a. changes were found in the spike (S) gene, particularly in the S2 subunit. Our data confirmed that PEDVPT-P96 was attenuated compared with PEDVPT-P5 but maintained its immunogenicity despite the presence of several a.a. differences in the immunodominant spike glycoprotein. The second objective was to develop a reverse genetic system of PEDV using PEDVPT-P96 as the backbone. By utilizing the RNA-launched method, we successfully constructed the first infectious cDNA clone of an attenuated G2b PEDV. The rescued recombinant virus (iPEDVPT-P96) exhibited a similar phenotype both in vitro and in vivo, but was further attenuated in the 5-week-old conventional piglet model compared to the parental PEDVPT-P96. Next generation sequencing of both viruses revealed that iPEDVPT-P96 harbored a remarkably decreased level of quasispecies compared to the parental PEDVPT-P96, which may account for the phenotypic differences between the two viruses. The full-length cDNA clone of iPEDVPT-P96 is expected to provide an access to study the attenuation determinants of PEDVPT-P96 and establish an iPEDVPT-P96-based recombinant vector for multivalent vaccine design. Our third objective was to study the role of the S protein in the attenuation process of PEDVPT 52 strain. We generated four infectious cDNA clones, namely the highly virulent iPEDVPT-P5, the attenuated iPEDVPT-P96, and the iPEDVPT-P5-96S and iPEDVPT-P96-5S with substitution of the complete S gene. In 7-day-old piglet model, we found that the replacement of the S gene of PEDVPT-P5 resulted in the complete restoration of the virulence of iPEDVPT-P96 with nearly identical pattern of clinical symptoms, fecal viral shedding, and high mortality rate to the highly virulent iPEDVPT-P5. In contrast, the reciprocal approach only partially attenuated the iPEDVPT-P5 for the iPEDVPT-P5-96S which eventually caused severer histopathological lesions and a higher mortality rate than those induced by the attenuated iPEDVPT-P96. Our data confirmed that the attenuation of the PEDVPT-P96 virus is primarily attributed to mutations in the S gene but other gene(s) might also play a role in determining virulence. To conclude, a reverse genetic system of G2b PEDV was successfully established and its applicability to investigate the attenuating mechanism of PEDV was also demonstrated. The findings and technology obtained herein would facilitate future researches on PEDV pathogenesis as well as safe and effective vaccine development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:18Z (GMT). No. of bitstreams: 1 ntu-109-D05629002-1.pdf: 5445975 bytes, checksum: 0d3c3643f8c9dc8b120b419e318bd531 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………I
致謝 ……………………………………………………………………………………II 中文摘要……………………………………………………………………………….III Abstract.………………………………………………………………………………..V Contents.…………………………………………………………….………………VIII Chapter I: General Introduction………………………………………………………..1 Section 1. Porcine epidemic diarrhea virus………………………………….2 Section 2. Coronavirus replication and structure……………………………5 Section 3. Reverse genetics…………………………………………………13 Section 4. Virulence determinants of coronaviruses and vaccine design……20 Section 5. Objective……………………………………………...…………24 Chapter II: Evaluation and Comparison of the Pathogenicity and Host Immune Responses Induced by a G2b Taiwan Porcine Epidemic Diarrhea Virus (Strain Pintung 52) and Its Highly Cell-Culture Passaged Strain in Conventional 5-Week-Old Pigs……………………………………………...………………25 Chapter III: The Characterization of Immunoprotection Induced by a cDNA Clone Derived from the Attenuated Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strain……………………………………………...…………….41 Chapter IV: Investigation of the Role of the Spike Protein in Reversing the Virulence of the Highly Virulent Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strains and Its Attenuated Counterpart……………………………………...60 Chapter V: General Discussion………………………………………………………..75 References.……………………………………………………………………………..85 | |
| dc.language.iso | en | |
| dc.subject | 棘蛋白 | zh_TW |
| dc.subject | 反向遺傳學系統 | zh_TW |
| dc.subject | 豬流行性下痢病毒 | zh_TW |
| dc.subject | 減毒 | zh_TW |
| dc.subject | 疫苗 | zh_TW |
| dc.subject | attenuation | en |
| dc.subject | porcine epidemic diarrhea virus (PEDV) | en |
| dc.subject | reverse genetics | en |
| dc.subject | spike glycoprotein | en |
| dc.subject | vaccine | en |
| dc.title | 構築第二基因型豬流行性下痢病毒之反向遺傳學系統以了解毒力變異相關基因及應用於發展疫苗研究 | zh_TW |
| dc.title | Construction of a Reverse Genetic System for Genogroup 2 Porcine Epidemic Diarrhea Virus to Study Virulence Determinants and Facilitate Vaccine Development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | ?飛(Victor Fei Pang),鄭謙仁(Chian-Ren Jeng),鄭益謙(Ivan-Chen Cheng),簡茂盛(Maw-Sheng Chien),邱慧英(Hue-Ying Chiou) | |
| dc.subject.keyword | 豬流行性下痢病毒,反向遺傳學系統,減毒,疫苗,棘蛋白, | zh_TW |
| dc.subject.keyword | porcine epidemic diarrhea virus (PEDV),reverse genetics,attenuation,vaccine,spike glycoprotein, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU202000314 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-04 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 5.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
