請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66764完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周楚洋 | |
| dc.contributor.author | Wei-Cheng Kuo | en |
| dc.contributor.author | 郭韋成 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:56:21Z | - |
| dc.date.available | 2020-02-10 | |
| dc.date.copyright | 2020-02-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-04 | |
| dc.identifier.citation | 行政院環境保護署水質保護網。2019。畜牧糞尿資源化。台北:行政院環境保護署。網址:https://water.epa.gov.tw/Page2_9.aspx。上網日期:2019-04-29。
國立台灣大學統計教學中心。2019初等統計學習實習講義。台北:國立台灣大學。網址: http://www.statedu.ntu.edu.tw/learn/index.asp。上網日期:2019-12-10。 APHA, AWWA and WEF. 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed., Washington, USA. Benn, N., and D. Zitomer. 2018. Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics. Frontiers in Environmental Science 5: 93. Cabaret, O.D., B. M. Vaca, and D. Bourissou. 2004. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis (phenolato) scandium complex. Chem. Rev. 104: 6147-6176. De Jong, S. J., E. R. Arias, D. T. S. Rijkers, C. F. Van Nostrum, J. J. Kettenes-Van den Bosch, and W. E. Hennink. 2001. New insights into the hydrolytic degradation of poly (lactic acid): participation of the alcohol terminus. Polymer 42(7): 2795-2802. Krause, M. J., and T. G. Townsend. 2016. Life-cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ. Sci. Technol. Letters 3(4): 166-169. Lunt, J. 1998. Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability 59(1-3): 145-152. Ma, H., T. P. Spaniol, and J. Okuda 2006. Highly heteroselective ring‐opening polymerization of rac‐lactide initiated by bis (phenolato) scandium complexes. Angewandte Chemie International Edition 45(46): 7818-7821. McCarty, P. L. 1964a. Anaerobic waste treatment fundamentals, Part One: chemistry and microbiology. Public Works 95(9): 107-112. McCarty, P. L. 1964b. Anaerobic waste treatment fundamentals, Part One: chemistry and microbiology. Public Works 95(9): 123-126. McCarty, P. L., and D. P. Smith. 1986. Anaerobic wastewater treatment. Environ. Sci. Technol. 20(12): 1200-1206. Samitthiwetcharong, S., P. Kullavanijaya, and O. Chavalparit. 2017. Anaerobic biodegradation of polylactic acid under mesophilic condition using thermal-alkaline pretreatment. In IOP Conference Series: Materials Science and Engineering. Vol. 222. No. 1. IOP Publishing. Samitthiwetcharong, S., and O. Chavalparit. 2019. Enhancement of methane production from alkaline pretreated polylactic acid waste by the co-digestion process. International Journal 16(56), 171-176. Scharer, J. M., and M. Moo-Young. 1979. Methane generation by anaerobic digestion of cellulose-containing wastes. Adv. Biochem Eng. 11:85-101. Tauseef, S. M., M. Premalatha, T. Abbasi, and S. A. Abbasi. 2013. Methane capture from livestock manure. Journal of Environmental Management. 117: 187-207. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66764 | - |
| dc.description.abstract | 聚乳酸是目前市場上公認最有潛力取代現今石化塑膠之生質塑膠。因其生物可分解性及其與塑膠相仿之機械特性使得綠色循環經濟為主流價值的社會對此材料越加重視,同時市場的需求也逐漸增加,而伴隨著聚乳酸製品需求的提升,聚乳酸廢棄物處理的重要性也受到大眾的關注。
本研究之目的為聚乳酸製品與豬糞尿水沼液進行厭氧共消化的可行性分析。首先探討聚乳酸粉末前處理之最佳時間,由乾物質量損耗試驗及化學需氧量和溶解性化學需氧量的變化試驗得到最佳水解時間為24小時。接著以生化甲烷潛能(BMP)測試找出最佳的聚乳酸及沼液之混和比例以及聚乳酸前處理方式。由試驗結果得知於中溫操作的環境下(37°C, Mesophilic)聚乳酸以及厭氧沼液之最佳混合比例為3:1,其20日之生化甲烷潛能測試可得單位甲烷產量為10.4 mL CH4/g VS added。此外。於相同之混和比例,分別測試不同化學藥品之聚乳酸前處理,由結果得知,以0.5M NaOH,80°C加熱處理24小時之聚乳酸有較佳之產氣表現,單位甲烷產量為139.4 mL CH4/g VS added。 再由上述的實驗結果,以24小時的水解時間及3:1的混和比例,在水力停留時間(HRT) 10天及進流TS 8%下進行連續式進出流試驗。分別測試在不同的化學前處理及操作溫度(37°C, 55°C)下,聚乳酸和沼液共消化的進出流效能。每日取樣分析pH、TS、VS及COD。氣體則每日讀取產氣量及分析氣體成分。實驗結果顯示,於中溫操作環境下,以0.5 M NaOH及0.5 M HCl處理之聚乳酸及沼液共消化之甲烷產率分別為1.17 L/L/d、1.08 L/L/d,與未處理聚乳酸及沼液共消化之甲烷產率比較,分別高出25%及15%。於高溫操作環境下,以0.5 M NaOH及0.5 M HCl處理之聚乳酸及沼液共消化之甲烷產率分別為1.38 L/L/d及1.18 L/L/d,與未處理聚乳酸及沼液共消化之甲烷產率比較,分別高出41%及20%。無論是中溫環境或高溫環境之連續式進出流處理,經NaOH處理之聚乳酸皆比HCl處理之聚乳酸能夠與厭氧沼液有更佳的厭氧產氣表現。而高溫操作明顯比中溫操作有較佳的產氣表現。 | zh_TW |
| dc.description.abstract | Poly-lactic acid (PLA) is known as a promising material to take the place of traditional petroleum products due to its biodegradability and similar properties to the petroleum-based plastics. Therefore, the treatment of the used PLA products cannot be overemphasized owing to its growing demand of the market.
The aim of this study is to utilize PLA products to anaerobically co-digest with the digestate of swine manure. First of all, we found out the optimal pretreatment time of PLA by performing the experiment of mass loss ratio and chemical oxygen demand. By the results, we concluded that 24 hours of pretreatment of PLA was optimal. Biochemical methane potential (BMP) test was performed to optimize the most appropriate mixing ratio of the PLA and the anaerobic digestate as well as to find out the best pretreatment method (acid or alkaline) of PLA. The results showed that at mesophilic temperature (37°C), the optimal mixing ratio of the PLA and the digestate was 3.0, with a yield of 10.4 (mL CH4/g volatile solids added) for a duration of 20 days BMP test. Moreover, under the identical operational conditions, alkaline pretreatment demonstrated better performance. It was found that heating PLA with 0.5 M NaOH for 24 hours would produce 139.4 (mL CH4/g volatile solids added). The results of the BMP test showed that the pretreated PLA can serve as an appropriate carbon source for the anaerobic digestate of swine manure. A continuous operation experiment was followed up at mesophilic and thermophilic conditions. At low hydraulic retention time (10 days) and high concentration (TS=8%) operation conditions, we discovered that PLA pretreated with 0.5M NaOH performed better from gas production and removal efficiency aspects. At mesophilic temperature, the methane production rate of NaOH pretreated PLA co-digestion with the digestate is 1.17 L/L/d, which is 25% more than the co digestion of the untreated PLA and the digestate; and the methane production rate of HCl pretreated PLA co-digestion with the digestate is 1.08 L/L/d, which is 15% more than the co digestion of the untreated PLA and the digestate Moreover, at thermophilic operation, the methane production rate of NaOH pretreated PLA co-digestion with the digestate is 1.38, which is 41% more than the co digestion of the untreated PLA and the digestate; and the methane production rate of HCl pretreated PLA co-digestion with the digestate is 1.18 L/L/d, which is 20% more than the co digestion of the untreated PLA. Operation temperature plays an important role for NaOH pretreated PLA. The rise of the gas production and removal efficiency showed the hydrolysis properties of PLA in alkaline environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:56:21Z (GMT). No. of bitstreams: 1 ntu-109-R06631038-1.pdf: 2981171 bytes, checksum: 47391e63a97d990a19eeb373470fbc03 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xi 第一章 前言與研究目的 1 第二章 文獻探討 2 2.1 聚乳酸(Poly-lactic acid, PLA) 2 2.1.1 簡介 2 2.1.2 聚乳酸之結構 2 2.1.3 聚乳酸的合成 4 2.1.4 聚乳酸的水解 5 2.1.5 聚乳酸之厭氧消化 6 2.1.6 聚乳酸之共消化 7 2.2 豬糞尿水 8 2.3 厭氧醱酵及共消化 9 2.3.1 厭氧醱酵 9 2.3.2 共消化 10 第三章 材料與方法 12 3.1 實驗流程 12 3.2 實驗材料及藥品 14 3.2.1 實驗藥品 14 3.2.2 進流基質 14 3.3 實驗設計 15 3.3.1 聚乳酸之水解 15 3.3.2 生化甲烷潛能測試(BMP Test) 16 3.3.3 聚乳酸及厭氧出流水之共消化連續式操作 18 3.4 實驗設備 19 3.4.1 聚乳酸之水解 19 3.4.2 生化甲烷潛能測定(BMP Test) 21 3.4.3 連續進流厭氧消化試驗 (CSTR Test) 21 3.5 分析方法 22 3.5.1 水質分析 22 3.5.2 氣體分析 23 3.5.3 統計方法 24 3.5.4 線性回歸 24 第四章 實驗結果 26 4.1 聚乳酸之水解最佳化 26 4.1.1 聚乳酸之水解效率 26 4.1.2 聚乳酸水解之COD測試 26 4.1.3 非線性迴歸 28 4.2生化甲烷潛能測試(BMP test) 31 4.2.1 聚乳酸與厭氧沼液之最佳混和比 31 4.2.2 聚乳酸之最佳化學處理濃度 32 4.3 連續式進出流試驗(Continuous operation) 33 4.3.1 連續式進出流試驗 34 4.3.2 中溫連續進出流試驗 40 4.3.3 高溫連續式進出流試驗 44 4.3.4 操作溫度對連續操作試驗的影響 48 4.4 與其他研究之比較 49 第五章 結論與建議 51 5.1 結論 51 5.2 建議 52 參考文獻 53 附錄 55 附錄一 符號說明 55 圖目錄 圖2-1 乳酸之光學異構物 3 圖2-2 丙交酯之光學異構物 3 圖2-3 聚乳酸之合成途徑 4 圖2-4 聚乳酸於不同酸鹼值下之水解機制 5 圖2-5 聚乳酸之不同產品於高溫厭氧環境之生化甲烷潛能測試 6 圖2-6 生化甲烷潛能測試前之掃描式電子顯微鏡圖 7 圖2-7 生化甲烷潛能測試後之掃描式電子顯微鏡圖 7 圖2-8 厭氧發酵產甲烷流程 10 圖3-1 研究流程圖 13 圖3-2 平順豬場之厭氧污泥濃縮池 14 圖3-3 進流基質與實驗器材 15 圖3-4 實驗儀器 20 圖3-5 化學需氧量實驗儀器 20 圖3-6 生化甲烷潛能測試示意圖 21 圖3-7 連續式進出流試驗示意圖 22 圖3-8 氣相層析儀 23 圖3-9 濕式氣體流量計 24 圖4-1 聚乳酸於不同化學處理下之水解效率 26 圖4-2 聚乳酸於不同化學處理下之SCOD數值 27 圖4-3 聚乳酸於不同化學處理下之SCOD/TCOD數值 28 圖4-4 聚乳酸之長時間水解效率驗證測試結果:質量損耗 30 圖4-5 聚乳酸之長時間水解效率驗證測試結果:COD 31 圖4-6 聚乳酸與厭氧沼液於不同比例情況下之厭氧產氣效率 32 圖4-7 聚乳酸於不同化學藥劑以及濃度處理之下之厭氧產氣效率 33 圖4-8 連續式進出流試驗氣體分析-槽1 36 圖4-9 連續式進出流試驗水質分析-槽1 37 圖4-10連續式進出流試驗氣體分析-槽2 38 圖4-11連續式進出流試驗水質分析-槽2 39 圖4-12中溫連續式操作水質分析:RTS、RVS、RCOD 41 圖4-13中溫連續式操作氣體分析:CH4 %、GPR、MPR 42 圖4-14高溫連續式操作水質分析:RTS、RVS、RCOD 45 圖4-15高溫連續式操作氣體分析:CH4 %、GPR、MPR 46 圖5-1 聚乳酸針對不同化學處理之生化甲烷潛能測試結果 51 表目錄 表3-1 化學藥品表 14 表3-2 生化甲烷潛能測試(最佳混和比) 17 表3-3 生化甲烷潛能測試(最佳化學處理) 17 表3-4 連續式反應槽起動參數 18 表3-5 連續式厭氧共消化實驗設計 19 表3-6 水質分析方法及細項(APHA, 1992) 22 表4-1 聚乳酸質量損耗水解試驗之非線性迴歸 29 表4-2 聚乳酸COD試驗之非線性迴歸 29 表4-3 聚乳酸之長時間水解效率預測:質量損耗 29 表4-4 聚乳酸之長時間水解效率預測:COD 30 表4-5 各料源之基本特性 34 表4-6 中溫連續式進出流數值 43 表4-7 高溫連續式進出流數值 47 表4-8 連續式操作於提高溫度之效益比較 48 表4-9 本研究與其他研究之比較 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚乳酸 | zh_TW |
| dc.subject | 前處理 | zh_TW |
| dc.subject | 沼液 | zh_TW |
| dc.subject | 共消化 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | Methane | en |
| dc.subject | Pretreatment | en |
| dc.subject | Digestate | en |
| dc.subject | Co-digestion | en |
| dc.subject | Poly-lactic Acid(PLA) | en |
| dc.title | 化學前處理於聚乳酸與沼液厭氧共消化之影響 | zh_TW |
| dc.title | Effect of Chemical Pretreatment on Anaerobic Co-digestion of Poly-lactic Acid and Digestate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳世銘,沈韶儀,蘇忠楨 | |
| dc.subject.keyword | 聚乳酸,前處理,沼液,共消化,甲烷, | zh_TW |
| dc.subject.keyword | Poly-lactic Acid(PLA),Pretreatment,Digestate,Co-digestion,Methane, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202000137 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 2.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
