請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66736完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顧家綺 | |
| dc.contributor.author | Ping-Feng Wu | en |
| dc.contributor.author | 吳秉峰 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:54:25Z | - |
| dc.date.available | 2014-03-02 | |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-09-30 | |
| dc.identifier.citation | 參考文獻
1. Anderson, D.M., Johnson, L., Glaccum, M.B., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Valentine, V., Kirstein, M.N., Shapiro, D.N., Morris, S.W., et al. (1995a). Chromosomal assignment and genomic structure of Il15. Genomics 25, 701-706. 2. Anderson, D.M., Kumaki, S., Ahdieh, M., Bertles, J., Tometsko, M., Loomis, A., Giri, J., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., et al. (1995b). Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem 270, 29862-29869. 3. Angiolillo, A.L., Kanegane, H., Sgadari, C., Reaman, G.H., and Tosato, G. (1997). Interleukin-15 promotes angiogenesis in vivo. Biochem Biophys Res Commun 233, 231-237. 4. Azimi, N., Brown, K., Bamford, R.N., Tagaya, Y., Siebenlist, U., and Waldmann, T.A. (1998). Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci U S A 95, 2452-2457. 5. Bamford, R.N., Battiata, A.P., Burton, J.D., Sharma, H., and Waldmann, T.A. (1996a). Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region /IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc Natl Acad Sci U S A 93, 2897-2902. 6. Bamford, R.N., Battiata, A.P., and Waldmann, T.A. (1996b). IL-15: the role of translational regulation in their expression. J Leukoc Biol 59, 476-480. 7. Bamford, R.N., DeFilippis, A.P., Azimi, N., Kurys, G., and Waldmann, T.A. (1998). The 5' untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 160, 4418-4426. 8. Bamford, R.N., Grant, A.J., Burton, J.D., Peters, C., Kurys, G., Goldman, C.K., Brennan, J., Roessler, E., and Waldmann, T.A. (1994). The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci U S A 91, 4940-4944. 9. Bergamaschi, C., Jalah, R., Kulkarni, V., Rosati, M., Zhang, G.M., Alicea, C., Zolotukhin, A.S., Felber, B.K., and Pavlakis, G.N. (2009). Secretion and biological activity of short signal peptide IL-15 is chaperoned by IL-15 receptor alpha in vivo. J Immunol 183, 3064-3072. 10. Bergamaschi, C., Rosati, M., Jalah, R., Valentin, A., Kulkarni, V., Alicea, C., Zhang, G.M., Patel, V., Felber, B.K., and Pavlakis, G.N. (2008). Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 283, 4189-4199. 11. Bianchi, T., Gasser, S., Trumpp, A., and MacDonald, H.R. (2006). c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood 107, 3992-3999. 12. Budagian, V., Bulanova, E., Paus, R., and Bulfone-Paus, S. (2006). IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 17, 259-280. 13. Bulanova, E., Budagian, V., Pohl, T., Krause, H., Durkop, H., Paus, R., and Bulfone-Paus, S. (2001). The IL-15R alpha chain signals through association with Syk in human B cells. J Immunol 167, 6292-6302. 14. Bulfone-Paus, S., Ungureanu, D., Pohl, T., Lindner, G., Paus, R., Ruckert, R., Krause, H., and Kunzendorf, U. (1997). Interleukin-15 protects from lethal apoptosis in vivo. Nat Med 3, 1124-1128. 15. Carson, W.E., Giri, J.G., Lindemann, M.J., Linett, M.L., Ahdieh, M., Paxton, R., Anderson, D., Eisenmann, J., Grabstein, K., and Caligiuri, M.A. (1994). Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 180, 1395-1403. 16. Doherty, T.M., Seder, R.A., and Sher, A. (1996). Induction and regulation of IL-15 expression in murine macrophages. J Immunol 156, 735-741. 17. Dubois, S., Magrangeas, F., Lehours, P., Raher, S., Bernard, J., Boisteau, O., Leroy, S., Minvielle, S., Godard, A., and Jacques, Y. (1999). Natural splicing of exon 2 of human interleukin-15 receptor alpha-chain mRNA results in a shortened form with a distinct pattern of expression. J Biol Chem 274, 26978-26984. 18. Dubois, S., Mariner, J., Waldmann, T.A., and Tagaya, Y. (2002). IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537-547. 19. Dubois, S.P., Waldmann, T.A., and Muller, J.R. (2005). Survival adjustment of mature dendritic cells by IL-15. Proc Natl Acad Sci U S A 102, 8662-8667. 20. Duitman, E.H., Orinska, Z., Bulanova, E., Paus, R., and Bulfone-Paus, S. (2008). How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: lessons from interleukin-15 (IL-15)/IL-15 receptor alpha. Mol Cell Biol 28, 4851-4861. 21. Fehniger, T.A., and Caligiuri, M.A. (2001). Interleukin 15: biology and relevance to human disease. Blood 97, 14-32. 22. Flamand, L., Stefanescu, I., and Menezes, J. (1996). Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J Clin Invest 97, 1373-1381. 23. Gaggero, A., Azzarone, B., Andrei, C., Mishal, Z., Meazza, R., Zappia, E., Rubartelli, A., and Ferrini, S. (1999). Differential intracellular trafficking, secretion and endosomal localization of two IL-15 isoforms. Eur J Immunol 29, 1265-1274. 24. Giri, J.G., Anderson, D.M., Kumaki, S., Park, L.S., Grabstein, K.H., and Cosman, D. (1995a). IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol 57, 763-766. 25. Giri, J.G., Kumaki, S., Ahdieh, M., Friend, D.J., Loomis, A., Shanebeck, K., DuBose, R., Cosman, D., Park, L.S., and Anderson, D.M. (1995b). Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14, 3654-3663. 26. Grabstein, K.H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M.A., Ahdieh, M., et al. (1994). Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965-968. 27. Hoontrakoon, R., Chu, H.W., Gardai, S.J., Wenzel, S.E., McDonald, P., Fadok, V.A., Henson, P.M., and Bratton, D.L. (2002). Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 26, 404-412. 28. JOHNSTON, J.A., CHRIS M. BACON, DAVID S. FINBLOOM, ROBERT C. REES, DAVID KAPLAN, KYO SHIBUYA, JOHN R. ORTALDO, SANJAY GUPTA, YI QING CHEN, JUDY D. GIRI, et al. (1995). Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci USA 92, 8705-8709. 29. Kanegane, H., and Tosato, G. (1996). Activation of naive and memory T cells by interleukin-15. Blood 88, 230-235. 30. Kennedy, M.K., Glaccum, M., Brown, S.N., Butz, E.A., Viney, J.L., Embers, M., Matsuki, N., Charrier, K., Sedger, L., Willis, C.R., et al. (2000). Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191, 771-780. 31. Kleizen, B., and Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16, 343-349. 32. Koka, R., Burkett, P., Chien, M., Chai, S., Boone, D.L., and Ma, A. (2004). Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 173, 3594-3598. 33. Koka, R., Burkett, P.R., Chien, M., Chai, S., Chan, F., Lodolce, J.P., Boone, D.L., and Ma, A. (2003). Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 197, 977-984. 34. Krause, H., Jandrig, B., Wernicke, C., Bulfone-Paus, S., Pohl, T., and Diamantstein, T. (1996). Genomic structure and chromosomal localization of the human interleukin 15 gene (IL-15). Cytokine 8, 667-674. 35. Kurys, G., Tagaya, Y., Bamford, R., Hanover, J.A., and Waldmann, T.A. (2000). The long signal peptide isoform and its alternative processing direct the intracellular trafficking of interleukin-15. J Biol Chem 275, 30653-30659. 36. Lodolce, J.P., Boone, D.L., Chai, S., Swain, R.E., Dassopoulos, T., Trettin, S., and Ma, A. (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669-676. 37. McDonald, P.P., Russo, M.P., Ferrini, S., and Cassatella, M.A. (1998). Interleukin-15 (IL-15) induces NF-kappaB activation and IL-8 production in human neutrophils. Blood 92, 4828-4835. 38. Minami, Y., Kono, T., Miyazaki, T., and Taniguchi, T. (1993). The IL-2 receptor complex: its structure, function, and target genes. Annu Rev Immunol 11, 245-268. 39. Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z.J., Oishi, I., Silvennoinen, O., Witthuhn, B.A., Ihle, J.N., et al. (1994). Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045-1047. 40. Miyazaki, T., Liu, Z.J., Kawahara, A., Minami, Y., Yamada, K., Tsujimoto, Y., Barsoumian, E.L., Permutter, R.M., and Taniguchi, T. (1995). Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation. Cell 81, 223-231. 41. Mortier, E., Bernard, J., Plet, A., and Jacques, Y. (2004). Natural, proteolytic release of a soluble form of human IL-15 receptor alpha-chain that behaves as a specific, high affinity IL-15 antagonist. J Immunol 173, 1681-1688. 42. Mortier, E., Quemener, A., Vusio, P., Lorenzen, I., Boublik, Y., Grotzinger, J., Plet, A., and Jacques, Y. (2006). Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 281, 1612-1619. 43. Mortier, E., Woo, T., Advincula, R., Gozalo, S., and Ma, A. (2008). IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 205, 1213-1225. 44. Musso, T., Calosso, L., Zucca, M., Millesimo, M., Ravarino, D., Giovarelli, M., Malavasi, F., Ponzi, A.N., Paus, R., and Bulfone-Paus, S. (1999). Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93, 3531-3539. 45. Nishimura, H., Hiromatsu, K., Kobayashi, N., Grabstein, K.H., Paxton, R., Sugamura, K., Bluestone, J.A., and Yoshikai, Y. (1996). IL-15 is a novel growth factor for murine gamma delta T cells induced by Salmonella infection. J Immunol 156, 663-669. 46. Nishimura, H., Washizu, J., Nakamura, N., Enomoto, A., and Yoshikai, Y. (1998). Translational efficiency is up-regulated by alternative exon in murine IL-15 mRNA. J Immunol 160, 936-942. 47. Ogasawara, K., Shigeaki Hida, Nazli Azimi, Yutaka Tagaya, Takeo Sato, Taeko Yokochi-Fukuda, Thomas A. Waldmann, Taniguchi, T., and Taki, S. (1998). Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391. 48. Ohteki, T., Ho, S., Suzuki, H., Mak, T.W., and Ohashi, P.S. (1997). Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T cell receptor-alpha beta+ cell development. J Immunol 159, 5931-5935. 49. Ohteki, T., Yoshida, H., Matsuyama, T., Duncan, G.S., Mak, T.W., and Ohashi, P.S. (1998). The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187, 967-972. 50. Onu, A., Pohl, T., Krause, H., and Bulfone-Paus, S. (1997). Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol 158, 255-262. 51. Pettit, D.K., Bonnert, T.P., Eisenman, J., Srinivasan, S., Paxton, R., Beers, C., Lynch, D., Miller, B., Yost, J., Grabstein, K.H., et al. (1997). Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem 272, 2312-2318. 52. Quinn, L.S., Haugk, K.L., and Damon, S.E. (1997). Interleukin-15 stimulates C2 skeletal myoblast differentiation. Biochem Biophys Res Commun 239, 6-10. 53. Quinn, L.S., Haugk, K.L., and Grabstein, K.H. (1995). Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology 136, 3669-3672. 54. Refaeli, Y., Van Parijs, L., London, C.A., Tschopp, J., and Abbas, A.K. (1998). Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615-623. 55. Reinecker, H.C., MacDermott, R.P., Mirau, S., Dignass, A., and Podolsky, D.K. (1996). Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111, 1706-1713. 56. Rubinstein, M.P., Kovar, M., Purton, J.F., Cho, J.H., Boyman, O., Surh, C.D., and Sprent, J. (2006). Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci U S A 103, 9166-9171. 57. Ruchatz, H., Leung, B.P., Wei, X.Q., McInnes, I.B., and Liew, F.Y. (1998). Soluble IL-15 receptor alpha-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J Immunol 160, 5654-5660. 58. Ruckert, R., Brandt, K., Braun, A., Hoymann, H.G., Herz, U., Budagian, V., Durkop, H., Renz, H., and Bulfone-Paus, S. (2005). Blocking IL-15 prevents the induction of allergen-specific T cells and allergic inflammation in vivo. J Immunol 174, 5507-5515. 59. Smith, X.G., Eleanor M. Bolton, Holger Ruchatz, Xiao-quing Wei, Foo Y. Liew, and Bradley, J.A. (2000). Selective Blockade of IL-15 by Soluble IL-15 Receptor a-Chain Enhances Cardiac Allograft Survival. The Journal of Immunology 165, 3444-3450. 60. Stonier, S.W., and Schluns, K.S. (2010). Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol Lett 127, 85-92. 61. Tan, X., and Lefrancois, L. (2006). Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium. Genes Immun 7, 407-416. 62. Tripathi, P., Kurtulus, S., Wojciechowski, S., Sholl, A., Hoebe, K., Morris, S.C., Finkelman, F.D., Grimes, H.L., and Hildeman, D.A. (2010). STAT5 is critical to maintain effector CD8+ T cell responses. J Immunol 185, 2116-2124. 63. Waldmann, T.A., Dubois, S., and Tagaya, Y. (2001). Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105-110. 64. Waldmann, T.A., and Tagaya, Y. (1999). The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17, 19-49. 65. Wei, X.Q., Michael Orchardson, J. Alastair Gracie, Bernard P. Leung, Bao-mei Gao, Hui Guan, Wanda Niedbala, Gavin K. Paterson, I.B.M., and Liew, F.Y. (2001). The Sushi Domain of Soluble IL-15 Receptor a Is Essential for Binding IL-15 and Inhibiting Inflammatory and Allogenic Responses In Vitro and In Vivo. The Journal of Immunology 167, 277-282. 66. Wu, T.S., Lee, J.M., Lai, Y.G., Hsu, J.C., Tsai, C.Y., Lee, Y.H., and Liao, N.S. (2002). Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol 168, 705-712. 67. Zhang, X., Sun, S., Hwang, I., Tough, D.F., and Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591-599. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66736 | - |
| dc.description.abstract | Cytokines are important for the generation, regulation and maintenance of an effective immune response. Alternative splicing of pre-mRNA in IL-2 family cytokines has been reported and might play a role in regulating the function of the corresponding prototype cytokine. For example, interleukin-15 (IL-15) is a pleiotropic cytokine that mediates innate and adaptive immune responses. While expression of alternatively spliced IL-15 mRNAs is differentially distributed among tissues, detail mechanisms by which IL-15 activity is regulated by the splice variant remain unclear.
In this study, we generated a plasmid expressing IL-15 cDNA with a 48-nucleotide deletion in exon 7 (called IL-15ΔE7) from full length IL-15 cDNA by PCR method. IL-15 or IL-15ΔE7 protein obtained from the supernatant or lysates of COS-7 or 293T cells which were transiently transfected with a plasmid expressing IL-15 or IL-15ΔE7 gene at 24-48 hours was further analyzed by immunofluorescene, ELISA, Western blotting and IL-15 dependent cell proliferation assay. Expression of IL-15 and IL-15ΔE7 proteins running at around 18-20 kDa by gel electrophoresis was confirmed by Western blotting. Whereas IL-15 was mainly expressed in the cytoplasm, IL-15ΔE7 was restricted and expressed in the ER by immunofluorescent assays. Moreover, secretion of IL-15ΔE7 into the medium was significantly reduced compared to IL-15 by ELISA. Results from IL-15 dependent cell proliferation assays using HT-2 cells / MTT assay revealed that culture supernatant from cells transfected with full-length IL-15 cDNA contained bioactivity for HT-2 cells while the supernatant from COS-7 cells transfected with IL-15ΔE7 had no comparable IL-15 activity at all. Recently, we have also established an IL-15Rα stably expressing COS-7 cell line by retrovirus infection. The cell line will be used to study the binding of IL-15 and IL-15ΔE7 to IL-15Rα in future experiments. In this study, we have established the plasmid expressing IL-15 and IL-15ΔE7 and also have characterized the differences between IL-15 and IL-15ΔE7 by transient transfection method. Results from this and the future experiments will lead to a better understanding on how IL-15 alternative splice variant could regulate IL-15 action and its impact on IL-15Rα-mediated signaling pathway. The information will be very helpful for the development of novel strategy in treating IL-15 mediated inflammatory disorders or diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:54:25Z (GMT). No. of bitstreams: 1 ntu-100-R98449007-1.pdf: 2836304 bytes, checksum: 2793d4c17f788456cb5c2faeb4a55369 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 大綱 iii Abstract iv 目錄 vi 圖目錄 ix 第一章 文獻探討 1 Part I. IL-15 1 1.IL-15的發現與蛋白質結構 1 2.IL-15的生物功能 3 3.IL-15的mRNA異構物 4 4.IL-15的轉錄與轉譯調控 4 Part II. IL-15受器與IL-15的訊息傳遞 6 1.IL-15R與IL-2R的比較 6 2.IL-15和IL-15Rα的結合 7 3.IL-15訊息傳遞 9 4.IL-15/IL-15Rα trans-presentation 9 第二章 研究目的 11 第三章 材料與方法 13 Part I. 實驗方法 13 1.細胞株與細胞培養 13 2.IL-15、IL-15ΔE7與IL-15Rα的DNA質體 13 3.PCR 多重聚合酶鏈鎖反應 13 4.以IFA 觀察IL-15及其異構物在細胞內的表現位置 14 5.以Western Blot確定細胞內的蛋白質表現 14 6.以ELISA進行IL-15的定量分析 15 7.以HT-2 assay確認IL-15的活性 15 8.建立IL-15Rα細胞株 16 Part II. 實驗材料 17 1.抗體 17 2.引子 19 3.細胞培養液 19 4.溶液 20 5.西方墨點法實驗材料與配置 22 6.其他藥劑 24 第四章 實驗結果 25 1.IL-15與IL-15ΔE7的質體建構 25 2.IL-15或IL-15ΔE7在細胞內的表現位置 26 3.比較IL-15與IL-15ΔE7的分子大小 27 4.ELISA檢測IL-15與IL-15ΔE7在轉染細胞的表現量 28 5.IL-15與IL-15ΔE7的生物活性測定 29 6.IL-15Rα細胞株的建立 31 第五章 實驗討論 33 第六章 實驗圖表 35 參考文獻 49 圖目錄 圖一:IL-15與IL-15ΔE7的質體建構。 36 圖二:IL-15或IL-15ΔE7在細胞內的表現位置。 38 圖三:IL-15與IL-15ΔE7有不同的電泳結果。 40 圖四:ELISA檢測IL-15與IL-15ΔE7在轉染細胞的表現量。 41 圖五:以HT-2/MTT檢測IL-15的生物活性。 42 圖六:GFP-RV-mIL-15Rα建構。 44 圖七:穩定表現IL-15Rα細胞株的建立。 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞株 | zh_TW |
| dc.subject | 介白質-15 | zh_TW |
| dc.subject | 介白質-15異構體 | zh_TW |
| dc.subject | 介白質-15受器 | zh_TW |
| dc.subject | 反轉錄病毒 | zh_TW |
| dc.subject | IL-15R | en |
| dc.subject | cell line | en |
| dc.subject | IL-15 | en |
| dc.subject | IL-15 isoform | en |
| dc.subject | retrovirus | en |
| dc.title | 探討 IL-15 異構體對 IL-15 生物活性與 IL-15Rα 在細胞膜表現量的調控 | zh_TW |
| dc.title | Inhibition of IL-15 bioactivity and the cell surface expression of IL-15Rα by IL-15 alternatively spliced isoform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 繆希椿,羅清維 | |
| dc.subject.keyword | 介白質-15,介白質-15異構體,介白質-15受器,反轉錄病毒,細胞株, | zh_TW |
| dc.subject.keyword | IL-15,IL-15 isoform,IL-15R,retrovirus,cell line, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-09-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
