請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66732完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊立民(Lee-Ming Chuang),蔡克嵩(Keh-Sung Tsai) | |
| dc.contributor.author | Jin-Ying Lu | en |
| dc.contributor.author | 呂金盈 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:54:11Z | - |
| dc.date.available | 2012-03-02 | |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-10-03 | |
| dc.identifier.citation | Aguilera, O., Fernandez, A.F., Munoz, A., and Fraga, M.F. Epigenetics and environment: a complex relationship. J Appl Physiol 2010. 109, 243-251.
Amodeo, G.A., Rudolph, M.J., and Tong, L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 2007. 449, 492-495. Ashrafi, K., Lin, S.S., Manchester, J.K., and Gordon, J.I. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 2000. 14, 1872-1885. Babiarz, J.E., Halley, J.E., and Rine, J. Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 2006. 20, 700-710. Baly, D.L., Keen, C.L., and Hurley, L.S. Pyruvate carboxylase and phosphoenolpyruvate carboxykinase activity in developing rats: effect of manganese deficiency. J Nutr 1985. 115, 872-879. Barker, M.G., Brimage, L.J., and Smart, K.A. Effect of Cu,Zn superoxide dismutase disruption mutation on replicative senescence in Saccharomyces cerevisiae. FEMS Microbiol Lett 1999. 177, 199-204. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 1993. 21, 3329-3330. Beale, E.G., Harvey, B.J., and Forest, C. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys 2007. 48, 89-95. Benkirane, M., Sardet, C., and Coux, O. Lessons from interconnected ubiquitylation and acetylation of p53: think metastable networks. Biochem Soc Trans 2010. 38, 98-103. Bitterman, K.J., Medvedik, O., and Sinclair, D.A. Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 2003. 67, 376-399, table of contents. Bordone, L., and Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005. 6, 298-305. Boudreault, A.A., Cronier, D., Selleck, W., Lacoste, N., Utley, R.T., Allard, S., Savard, J., Lane, W.S., Tan, S., and Cote, J. Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 2003. 17, 1415-1428. Burgess, S.C., He, T., Yan, Z., Lindner, J., Sherry, A.D., Malloy, C.R., Browning, J.D., and Magnuson, M.A. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 2007. 5, 313-320. Burke, D.T., Carle, G.F., and Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 1987. 236, 806-812. Burlini, N., Lamponi, S., Radrizzani, M., Monti, E., and Tortora, P. Identification of a phosphorylated form of phosphoenolpyruvate carboxykinase from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1987. 930, 220-229. Burtner, C.R., Murakami, C.J., Kennedy, B.K., and Kaeberlein, M. A molecular mechanism of chronological aging in yeast. Cell Cycle 2009. 8, 1256-1270. Celic, I., Masumoto, H., Griffith, W.P., Meluh, P., Cotter, R.J., Boeke, J.D., and Verreault, A. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol 2006. 16, 1280-1289. Chang, K.T., and Min, K.T. Regulation of lifespan by histone deacetylase. Ageing Res Rev 2002. 1, 313-326. Chen, Y., Kwon, S.W., Kim, S.C., and Zhao, Y. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J Proteome Res 2005. 4, 998-1005. Chiocchetti, A., Zhou, J., Zhu, H., Karl, T., Haubenreisser, O., Rinnerthaler, M., Heeren, G., Oender, K., Bauer, J., Hintner, H., et al. Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 2007. 42, 275-286. Close, P., Creppe, C., Gillard, M., Ladang, A., Chapelle, J.P., Nguyen, L., and Chariot, A. The emerging role of lysine acetylation of non-nuclear proteins. Cell Mol Life Sci 2010a. 67, 1255-1264. Close, P., Creppe, C., Gillard, M., Ladang, A., Chapelle, J.P., Nguyen, L., and Chariot, A. The emerging role of lysine acetylation of non-nuclear proteins. Cellular and molecular life sciences : CMLS 2010b. 67, 1255-1264. Cohen, E., and Dillin, A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci 2008. 9, 759-767. Colman, R.J., and Anderson, R.M. Nonhuman primate calorie restriction. Antioxid Redox Signal 2011. 14, 229-239. Corfe, B.M., Williams, E.A., Bury, J.P., Riley, S.A., Croucher, L.J., Lai, D.Y., and Evans, C.A. A study protocol to investigate the relationship between dietary fibre intake and fermentation, colon cell turnover, global protein acetylation and early carcinogenesis: the FACT study. BMC Cancer 2009. 9, 332. Dang, W., Steffen, K.K., Perry, R., Dorsey, J.A., Johnson, F.B., Shilatifard, A., Kaeberlein, M., Kennedy, B.K., and Berger, S.L. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 2009. 459, 802-807. Defossez, P.A., Lin, S.J., and McNabb, D.S. Sound silencing: the Sir2 protein and cellular senescence. Bioessays 2001. 23, 327-332. Diaz-Ruiz, R., Rigoulet, M., and Devin, A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 2010. Dirks, A.J., and Leeuwenburgh, C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 2006. 127, 1-7. Donmez, G., and Guarente, L. Aging and disease: connections to sirtuins. Aging Cell 2010. 9, 285-290. Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O'Connell, T.M., Bunger, M.K., and Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell metabolism 2011. 13, 517-526. Ehrentraut, S., Weber, J.M., Dybowski, J.N., Hoffmann, D., and Ehrenhofer-Murray, A.E. Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. Proc Natl Acad Sci U S A 2010. 107, 5522-5527. Ekins, R.P. Multi-analyte immunoassay. J Pharm Biomed Anal 1989. 7, 155-168. Evans, D.S., Kapahi, P., Hsueh, W.C., and Kockel, L. TOR signaling never gets old: Aging, longevity and TORC1 activity. Ageing Res Rev 2011. 10, 225-237. Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V.D. Sir2 blocks extreme life-span extension. Cell 2005. 123, 655-667. Fabrizio, P., and Longo, V.D. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2003. 2, 73-81. Fabrizio, P., and Longo, V.D. The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 2007. 371, 89-95. Fabrizio, P., Pozza, F., Pletcher, S.D., Gendron, C.M., and Longo, V.D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 2001. 292, 288-290. Fallin, M.D., and Matteini, A. Genetic epidemiology in aging research. J Gerontol A Biol Sci Med Sci 2009. 64, 47-60. Footitt, E.J., Karimova, A., Burch, M., Yayeh, T., Dupre, T., Vuillaumier-Barrot, S., Chantret, I., Moore, S.E., Seta, N., and Grunewald, S. Cardiomyopathy in the congenital disorders of glycosylation (CDG): a case of late presentation and literature review. J Inherit Metab Dis 2009. Ganapathy-Kanniappan, S., Vali, M., Kunjithapatham, R., Buijs, M., Syed, L.H., Rao, P.P., Ota, S., Kwak, B.K., Loffroy, R., and Geschwind, J.F. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 2010. 11, 510-517. Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio, M., et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005. 122, 221-233. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. Life with 6000 genes. Science 1996. 274, 546, 563-547. Gruzman, A., Babai, G., and Sasson, S. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a New Target for Antidiabetic Drugs: A Review on Metabolic, Pharmacological and Chemical Considerations. Rev Diabet Stud 2009. 6, 13-36. Guarente, L., and Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 2000. 408, 255-262. Haigis, M.C., and Yankner, B.A. The aging stress response. Molecular cell 2010. 40, 333-344. Hakimi, P., Yang, J., Casadesus, G., Massillon, D., Tolentino-Silva, F., Nye, C.K., Cabrera, M.E., Hagen, D.R., Utter, C.B., Baghdy, Y., et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 2007. 282, 32844-32855. Hanson, R.W., and Reshef, L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 1997. 66, 581-611. Hedbacker, K., and Carlson, M. SNF1/AMPK pathways in yeast. Front Biosci 2008. 13, 2408-2420. Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R., and Loewith, R. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 2009. 23, 1929-1943. Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J., and Nakatani, Y. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000. 102, 463-473. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983. 153, 163-168. Jablonowski, D., Fichtner, L., Stark, M.J., and Schaffrath, R. The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 2004. 15, 1459-1469. Jiang, J.C., Wawryn, J., Shantha Kumara, H.M., and Jazwinski, S.M. Distinct roles of processes modulated by histone deacetylases Rpd3p, Hda1p, and Sir2p in life extension by caloric restriction in yeast. Exp Gerontol 2002. 37, 1023-1030. Jones, D.P. Redox sensing: orthogonal control in cell cycle and apoptosis signalling. J Intern Med 2010. 268, 432-448. Jones, R.G., Plas, D.R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M.J., and Thompson, C.B. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular cell 2005. 18, 283-293. Kaeberlein, M., Burtner, C.R., and Kennedy, B.K. Recent developments in yeast aging. PLoS Genet 2007. 3, e84. Kaeberlein, M., McVey, M., and Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999. 13, 2570-2580. Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005. 310, 1193-1196. Keogh, M.C., Mennella, T.A., Sawa, C., Berthelet, S., Krogan, N.J., Wolek, A., Podolny, V., Carpenter, L.R., Greenblatt, J.F., Baetz, K., et al. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev 2006. 20, 660-665. Kim, G.W., Gocevski, G., Wu, C.J., and Yang, X.J. Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int J Cell Biol 2010. 2010, 632739. Kim, M.D., Hong, S.P., and Carlson, M. Role of Tos3, a Snf1 protein kinase kinase, during growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Eukaryot Cell 2005. 4, 861-866. Kim, S., Benguria, A., Lai, C.Y., and Jazwinski, S.M. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 1999. 10, 3125-3136. Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006. 23, 607-618. Kim, Y.I. Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res 2007. 51, 267-292. Langley, E., Pearson, M., Faretta, M., Bauer, U.M., Frye, R.A., Minucci, S., Pelicci, P.G., and Kouzarides, T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002. 21, 2383-2396. Lee, K.K., and Workman, J.L. Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 2007. 8, 284-295. Lezin, A., Gillet, N., Olindo, S., Signate, A., Grandvaux, N., Verlaeten, O., Belrose, G., de Carvalho Bittencourt, M., Hiscott, J., Asquith, B., et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood 2007. 110, 3722-3728. Li, Y., Yokota, T., Gama, V., Yoshida, T., Gomez, J.A., Ishikawa, K., Sasaguri, H., Cohen, H.Y., Sinclair, D.A., Mizusawa, H., et al. Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ 2007. 14, 2058-2067. Lin, S.J., Defossez, P.A., and Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000. 289, 2126-2128. Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., and Guarente, L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002. 418, 344-348. Lin, S.S., Manchester, J.K., and Gordon, J.I. Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem 2003. 278, 13390-13397. Lin, Y.Y., Lu, J.Y., Zhang, J., Walter, W., Dang, W., Wan, J., Tao, S.C., Qian, J., Zhao, Y., Boeke, J.D., et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 2009. 136, 1073-1084. Lin, Y.Y., Qi, Y., Lu, J.Y., Pan, X., Yuan, D.S., Zhao, Y., Bader, J.S., and Boeke, J.D. A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 2008. 22, 2062-2074. Liu, F., Benashski, S.E., Persky, R., Xu, Y., Li, J., and McCullough, L.D. Age-related changes in AMP-activated protein kinase after stroke. Age 2011. Lu, J.Y., Lin, Y.Y., Qian, J., Tao, S.C., Zhu, J., Pickart, C., and Zhu, H. Functional dissection of a HECT ubiquitin E3 ligase. Mol Cell Proteomics 2008. 7, 35-45. Madia, F., Gattazzo, C., Wei, M., Fabrizio, P., Burhans, W.C., Weinberger, M., Galbani, A., Smith, J.R., Nguyen, C., Huey, S., et al. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. The Journal of cell biology 2008. 180, 67-81. Mair, W., Morantte, I., Rodrigues, A.P., Manning, G., Montminy, M., Shaw, R.J., and Dillin, A. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 2011. 470, 404-408. Marino, G., Ugalde, A.P., Salvador-Montoliu, N., Varela, I., Quiros, P.M., Cadinanos, J., van der Pluijm, I., Freije, J.M., and Lopez-Otin, C. Premature aging in mice activates a systemic metabolic response involving autophagy induction. Human molecular genetics 2008. 17, 2196-2211. McAleer, W.J., Buynak, E.B., Maigetter, R.Z., Wampler, D.E., Miller, W.J., and Hilleman, M.R. Human hepatitis B vaccine from recombinant yeast. Nature 1984. 307, 178-180. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P.P., Lanfrancone, L., and Pelicci, P.G. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999. 402, 309-313. Millar, C.B., Xu, F., Zhang, K., and Grunstein, M. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 2006. 20, 711-722. Mitchell, L., Lambert, J.P., Gerdes, M., Al-Madhoun, A.S., Skerjanc, I.S., Figeys, D., and Baetz, K. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 2008. 28, 2244-2256. Mohana Kumar, B., Song, H.J., Cho, S.K., Balasubramanian, S., Choe, S.Y., and Rho, G.J. Effect of histone acetylation modification with sodium butyrate, a histone deacetylase inhibitor, on cell cycle, apoptosis, ploidy and gene expression in porcine fetal fibroblasts. J Reprod Dev 2007. 53, 903-913. Morley, J.E., Chahla, E., and Alkaade, S. Antiaging, longevity and calorie restriction. Curr Opin Clin Nutr Metab Care 2010. 13, 40-45. Mortimer, R.K., and Johnston, J.R. Life span of individual yeast cells. Nature 1959. 183, 1751-1752. Muller, I. Parental age and the life-span of zygotes of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 1985. 51, 1-10. Myzak, M.C., and Dashwood, R.H. Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets 2006. 7, 443-452. Nakamura, A., Kawakami, K., Kametani, F., Nakamoto, H., and Goto, S. Biological significance of protein modifications in aging and calorie restriction. Ann N Y Acad Sci 2010. 1197, 33-39. Narbonne, P., and Roy, R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 2009. 457, 210-214. Nian, H., Delage, B., Pinto, J.T., and Dashwood, R.H. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 2008. 29, 1816-1824. Nishimaki, S., Yukawa, T., Makita, Y., Honda, H., Kikuchi, N., Minamisawa, S., and Yokota, S. Transient neonatal diabetes mellitus in an extremely preterm infant. BMJ Case Rep 2009. 2009. Ooi, S.L., Pan, X., Peyser, B.D., Ye, P., Meluh, P.B., Yuan, D.S., Irizarry, R.A., Bader, J.S., Spencer, F.A., and Boeke, J.D. Global synthetic-lethality analysis and yeast functional profiling. Trends Genet 2006. 22, 56-63. Powers, R.W., 3rd, Kaeberlein, M., Caldwell, S.D., Kennedy, B.K., and Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006. 20, 174-184. Powers, T. TOR signaling and S6 kinase 1: Yeast catches up. Cell Metab 2007. 6, 1-2. Pozharny, Y., Lambertini, L., Clunie, G., Ferrara, L., and Lee, M.J. Epigenetics in women's health care. Mt Sinai J Med 2010. 77, 225-235. Pronk, J.T., Yde Steensma, H., and Van Dijken, J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996. 12, 1607-1633. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. Global analysis of protein phosphorylation in yeast. Nature 2005. 438, 679-684. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., and Seraphin, B. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 2001. 24, 218-229. Ravanal, M.C., Goldie, H., and Cardemil, E. Thermal stability of phosphoenolpyruvate carboxykinases from Escherichia coli, Trypanosoma brucei, and Saccharomyces cerevisiae. J Protein Chem 2003. 22, 311-315. Reznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.X., Dong, J., Mustard, K.J., Hawley, S.A., et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007. 5, 151-156. Robyr, D., Suka, Y., Xenarios, I., Kurdistani, S.K., Wang, A., Suka, N., and Grunstein, M. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 2002. 109, 437-446. Roman, H., Hawthorne, D.C., and Douglas, H.C. Polypoidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proc Natl Acad Sci U S A 1951. 37, 79-84. Rose, M.D., and Broach, J.R. Cloning genes by complementation in yeast. Methods Enzymol 1991. 194, 195-230. Rusche, L.N., Kirchmaier, A.L., and Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003. 72, 481-516. Ryan, J.M., and Cristofalo, V.J. Histone acetylation during aging of human cells in culture. Biochem Biophys Res Commun 1972. 48, 735-742. Sanz, P. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans 2003. 31, 178-181. Sarge, K.D., and Park-Sarge, O.K. Sumoylation and human disease pathogenesis. Trends Biochem Sci 2009. 34, 200-205. Schmidt, M.C., and McCartney, R.R. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J 2000. 19, 4936-4943. Schuller, H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003. 43, 139-160. Schwer, B., Eckersdorff, M., Li, Y., Silva, J.C., Fermin, D., Kurtev, M.V., Giallourakis, C., Comb, M.J., Alt, F.W., and Lombard, D.B. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009. 8, 604-606. Seo, J., and Lee, K.J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 2004. 37, 35-44. Shahbazian, M.D., and Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007. 76, 75-100. Sherman, J.M., Stone, E.M., Freeman-Cook, L.L., Brachmann, C.B., Boeke, J.D., and Pillus, L. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell 1999. 10, 3045-3059. Shi, L., Sutter, B.M., Ye, X., and Tu, B.P. Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth. Mol Biol Cell 2010. 21, 1982-1990. Silva, H., and Conboy, I.M. (2008). Aging and stem cell renewal. In StemBook (Cambridge (MA)). Simboeck, E., Sawicka, A., Zupkovitz, G., Senese, S., Winter, S., Dequiedt, F., Ogris, E., Di Croce, L., Chiocca, S., and Seiser, C. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J Biol Chem 2010. Singh, B.N., Zhang, G., Hwa, Y.L., Li, J., Dowdy, S.C., and Jiang, S.W. Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 2010. 10, 935-954. Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 1996. 84, 633-642. Smith, E.R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou, J., Cook, R.G., Lucchesi, J.C., and Allis, C.D. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci U S A 1998. 95, 3561-3565. Smith, M.G., Jona, G., Ptacek, J., Devgan, G., Zhu, H., Zhu, X., and Snyder, M. Global analysis of protein function using protein microarrays. Mech Ageing Dev 2005. 126, 171-175. Spange, S., Wagner, T., Heinzel, T., and Kramer, O.H. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009. 41, 185-198. Sperandio, M., Gleissner, C.A., and Ley, K. Glycosylation in immune cell trafficking. Immunol Rev 2009. 230, 97-113. Sterner, D.E., and Berger, S.L. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000. 64, 435-459. Takahashi, H., McCaffery, J.M., Irizarry, R.A., and Boeke, J.D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 2006. 23, 207-217. Thomson, D.M., Brown, J.D., Fillmore, N., Ellsworth, S.K., Jacobs, D.L., Winder, W.W., Fick, C.A., and Gordon, S.E. AMP-activated protein kinase response to contractions and treatment with the AMPK activator AICAR in young adult and old skeletal muscle. The Journal of physiology 2009. 587, 2077-2086. Todi, S.V., Scaglione, K.M., Blount, J.R., Basrur, V., Conlon, K.P., Pastore, A., Elenitoba-Johnson, K., and Paulson, H.L. Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J Biol Chem 2010. 285, 39303-39313. Toulmay, A., and Schneiter, R. A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae. Yeast 2006. 23, 825-831. Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 2007. 26, 663-674. Utley, R.T., Ikeda, K., Grant, P.A., Cote, J., Steger, D.J., Eberharter, A., John, S., and Workman, J.L. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 1998. 394, 498-502. van den Berg, M.A., de Jong-Gubbels, P., Kortland, C.J., van Dijken, J.P., Pronk, J.T., and Steensma, H.Y. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 1996. 271, 28953-28959. van Voorst, F., Houghton-Larsen, J., Jonson, L., Kielland-Brandt, M.C., and Brandt, A. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 2006. 23, 351-359. Vijg, J., and Campisi, J. Puzzles, promises and a cure for ageing. Nature 2008. 454, 1065-1071. Waby, J.S., Chirakkal, H., Yu, C., Griffiths, G.J., Benson, R.S., Bingle, C.D., and Corfe, B.M. Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line. Mol Cancer 2010. 9, 275. Wallace, D.C. Bioenergetics and the epigenome: interface between the environment and genes in common diseases. Dev Disabil Res Rev 2010. 16, 114-119. Wallace, D.C., and Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010. 10, 12-31. Walsh, C.T., Garneau-Tsodikova, S., and Gatto, G.J., Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005. 44, 7342-7372. Wang, A., Kurdistani, S.K., and Grunstein, M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 2002. 298, 1412-1414. Wang, W., Yang, X., Lopez de Silanes, I., Carling, D., and Gorospe, M. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. The Journal of biological chemistry 2003. 278, 27016-27023. Wang, Y., Liang, Y., and Vanhoutte, P.M. SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model. FEBS letters 2011. 585, 986-994. Weaver, I.C. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let's call the whole thing off. Epigenetics 2007. 2, 22-28. Weaver, I.C., Cervoni, N., Champagne, F.A., D'Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M., and Meaney, M.J. Epigenetic programming by maternal behavior. Nat Neurosci 2004. 7, 847-854. Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L.M., and Longo, V.D. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 2009. 5, e1000467. Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., and Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009. 324, 1076-1080. Williams, D.S., Cash, A., Hamadani, L., and Diemer, T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell 2009. 8, 765-768. Williamson, E., Ponsonby, A.L., Carlin, J., and Dwyer, T. Effect of including environmental data in investigations of gene-disease associations in the presence of qualitative interactions. Genet Epidemiol 2010. 34, 552-560. Willis-Martinez, D., Richards, H.W., Timchenko, N.A., and Medrano, E.E. Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol 2010. 45, 279-285. Yaffe, M.P. Analysis of mitochondrial function and assembly. Methods Enzymol 1991. 194, 627-643. Yang, X.J., and Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 2008. 9, 206-218. Yauk, C.L., and Berndt, M.L. Review of the literature examining the correlation among DNA microarray technologies. Environ Mol Mutagen 2007. 48, 380-394. Zaman, S., Lippman, S.I., Zhao, X., and Broach, J.R. How Saccharomyces Responds to Nutrients. Annu Rev Genet 2008. Zhang, T.Y., Hellstrom, I.C., Bagot, R.C., Wen, X., Diorio, J., and Meaney, M.J. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 2010. 30, 13130-13137. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010. 327, 1000-1004. Zhou, J., Zhou, B.O., Lenzmeier, B.A., and Zhou, J.Q. Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 2009. 37, 3699-3713. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., et al. Global analysis of protein activities using proteome chips. Science 2001. 293, 2101-2105. Zhu, H., and Snyder, M. Protein chip technology. Curr Opin Chem Biol 2003. 7, 55-63. Zu, Y., Liu, L., Lee, M.Y., Xu, C., Liang, Y., Man, R.Y., Vanhoutte, P.M., and Wang, Y. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circulation research 2010. 106, 1384-1393. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66732 | - |
| dc.description.abstract | 在本論文中,我們首度利用真核生物的完整蛋白質體篩檢平台,找到酵母菌唯一的存活所不可或缺的賴氨酸乙醯基轉移酶 (lysine acetyltransferase) 所作用的下游非組蛋白受質 (non-histone protein substrates),以及第一批受質的乙醯化位點 (acetylation sites)。
在第一部分的研究中,我們利用蛋白質體微陣列晶片 (proteome microarray),找到NuA4蛋白質複合體 (其催化次單元為Esa1) 這個酵母菌唯一與存活有關的重要賴氨酸乙醯基轉移酶 (essential lysine acetyltransferase) 的十三個乙醯化受質,並發現他們大多為新陳代謝以及細胞因應能量壓力有關的重要蛋白質。在這些受質之中,phosphoenolpyruvate carboxykinase (Pck1) 為位於細胞質內,一個葡萄糖新生 (gluconeogenesis) 作用的關鍵酵素。此一發現暗示NuA4有除了調控細胞核內染色質有關的細胞過程以外,也控制細胞核外、細胞質內的重要新陳代謝相關功能。利用串聯質譜儀 (tandem mass spectrometry) 的技術,我們找到Pck1被乙醯化之賴氨酸位點 (lysine 514, or K514)。利用生化技術,我們進一步確認Pck1的賴氨酸去乙醯酶 (lysine deacetylase) 為Sir2。Pck1的K514乙醯化會影響其催化葡萄糖新生的酵素活性:當把K514突變為精氨酸 (arginine, or pck1-K514R) ,以模擬去乙醯化狀態之Pck1 時,Pck1活性幾乎完全消失。此外,帶有此突變的酵母菌 pck1-K514R,在乙醇培養基上的存活能力變差。相反的,當把K514突變為麩醯氨(glutamine, or Q)時,模擬強制乙醯化狀態之pck1-K514Q,不僅對於高濃度的乙醇有較佳的耐受力,也會挽救esa1溫度突變菌株在乙醇培養基上存活變差的現象。顯示Pck1為NuA4下游,調控使用乙醇為替代碳水化合物來源時,絕對必須的葡萄糖新生作用一個很重要的受質。我們也進一步證實,Pck1對於酵母菌在能量限制狀態下,時間存活壽命 (chronologic life span) 的延長,扮演關鍵的角色。 在第二部份的研究中,我們發現NuA4 這個重要的賴氨酸乙醯基轉移酶,會乙醯化另一個非組蛋白叫做Sip2。Sip2是Snf1 蛋白質複合體的三個beta次單元其中之一,而Snf1蛋白質複合體為酵母菌的AMP-activated protein kinase (AMPK) 同源基因 (homologue)。我們的研究發現,Sip2蛋白質之乙醯化程度,會隨酵母菌老化而減少。利用串聯質譜儀,我們找到四個Sip2蛋白質的乙醯化位點:賴氨酸 (lysine, K) K12、16、17 以及256。我們也證明Sip2 之乙醯化,是由 互相拮抗的賴氨酸乙醯基轉移酶 NuA4 ,以及賴氨酸去乙醯酶 Rpd3 所共同控制。模擬乙醯化狀態的SIP2突變 (sip2-4KQ),會顯著延長酵母菌的複製存活壽命;相反的,模擬去乙醯化狀態的SIP2突變 (sip2-4KR),與敲毀SIP2基因相同,都會顯著縮短酵母菌的複製存活壽命。Sip2 之乙醯化,會增加其與Snf1催化次單元的結合能力與交互作用。Sip2-Snf1之交互作用會抑制Snf1的催化活性,因而減少其下游標的基因--Sch9 (酵母菌之Akt/S6K同源基因) 的磷酸化及活化,最終導致生長減緩、卻可延長酵母菌的複製存活壽命 (replicative life span)。模擬Sip2 乙醯化狀態的基因突變株 (sip2-4KQ),其所含有之壓力指標物—trehalose的濃度較低,且對於與老化有關的氧化壓力具有較佳的耐受性。我們也進一步證實Sip2乙醯化的抑制生長及抗老化效果,是獨立於外在營養之可近性,以及TORC1的活性。我們認為此一新發現之隨細胞老化而逐漸減少的蛋白質乙醯化、與逐漸增強的磷酸化訊息傳遞路徑,藉由調控重要的下游基因Sch9 之磷酸化與活性,會經由控制細胞內在環境的老化壓力,從而影響細胞的複製存活壽命。 我們的研究,首度證明賴氨酸乙醯化的非組蛋白受質,在時間存活壽命與複製存活壽命所扮演的重要角色。未來希望可以將此結果應用於人類與老化有關的新陳代謝疾病與癌症之相關研究。 | zh_TW |
| dc.description.abstract | In this essay we report the use of whole proteome screen in eukaryotes to discover the first non-histone substrates of the only essential lysine acetyltransferase, and the first non-chromatin acetylation sites in yeast.
In the first study, we used the yeast proteome microarray to identify 13 in vivo substrates of the only essential lysine acetyltransferase NuA4 complex (containing the Esa1 catalytic subunit) in yeast. Many of the in vivo substrates are metabolic enzymes and stress-response proteins, including phosphoenolpyruvate carboxykinase (Pck1), a well-characterized enzyme catalyzing the rate-limiting step in gluconeogenesis in the cytoplasm, indicating a surprising extranuclear function of NuA4 in regulating metabolism besides its well-studied regulation of chromatin-related processes. Using mass spectrometry, we identified lysine residue 514 (K514) as the Esa1-dependent acetylation site in Pck1, and further showed the same site was deacetylated by lysine deacetylase Sir2. Moreover, we found that mutations of K514 affected enzymatic activity of Pck1 to conduct gluconeogenesis and hence the ability of cells to grow on non-fermentable carbon sources such as ethanol. When K514 was mutated to arginine (pck1-K514R) to abolish acetylation at this critical site, the enzymatic activity of purified Pck1 was markedly decreased in vitro, and the cells lost the ability to grow in ethanol. By contrast, substituting K514 with glutamine (pck1-K514Q, a mutation mimicking constitutive acetylation) could almost completely rescue the lethality of mutants with defective Esa1 function in ethanol. These results suggested that K514 is the only lysine residue of Pck1 targeted by Esa1 and Sir2. Interestingly, both pck1-K514Q and sir2∆ mutants enhance the viability of cells on high concentration of ethanol. Loss of Pck1 activity by either deletion of the encoding gene or by mutation of K514 to arginine blocked the extension of chronological life span under calorie restriction. Furthermore, this activating acetylation might be conserved in mammalian system since human Pck1 could rescue the lethality of yeast cells lacking PCK1 in ethanol, despite a low sequence homology, and hPck1 acetylation and glucose production was dependent on TIP60 in human hepatocellular carcinoma (HepG2) cells. In summary, we have found novel extracellular functions of yeast NuA4 complex in regulating gluconeogenesis and chronological life span. Aging is a plastic phenotype determined partially by the cellular metabolism and energy expenditure. Our second study describes a novel regulatory cascade mediated by acetylation and phosphorylation that modulates cellular metabolism, growth and replicative life span in yeast. At the top of the pathway is the essential lysine acetyltransferase NuA4, which acetylates a regulatory subunit of the Snf1 complex (yeast AMPK), called Sip2. This acetylation blocks kinase action by stabilizing Sip2-Snf1 protein interaction; in response to deacetylation, Snf1 is released from Sip2 inhibition and then activates a life span shortening pathway by phosphorylating Sch9. Snf1 kinase is a key regulator of energy homeostasis required for transcription of glucose-repressed genes and certain stress-response genes. A previously unsolved mystery is why Snf1 activity increases with aging and exhibits negative effects on life span extension. We show that Sch9, the yeast homologue of mammalian Akt/S6K, a known life span antagonist, is phosphorylated and activated by Snf1. Acetylation of Sip2 enhances physical interaction with Snf1, antagonizes its catalytic activity and suppresses detrimental effects of Snf1 on life span extension. Decreased Sip2 acetylation during aging enhances activity of Snf1 and the downstream Sch9 kinase. We further demonstrate that Sip2 acetylation decreases intracellular trehalose level, a stress indicator, and increases resistance to aging-associated oxidative stress. Whether calorie restriction is the only pathway and approach for life span extension is unclear. Previous reports suggested that calorie restriction might lead to unwelcome health concerns in humans, especially elderly and non-obese subjects. Our study provides evidence of a potential “intrinsic aging pathway” mediated by an acetylation-phosphorylation cascade that is largely unresponsive to calorie restriction. Although calorie restriction increases the life span of non-acetylatable Sip2 mutants, or when SIP2 is deleted (both mimicking the aging status); the benefit of glucose limitation to constitutively acetylated Sip2 mutants is limited, indicating a partially overlapping common downstream pathway for calorie restriction and intrinsic aging. Our study confirmed the relationship between non-histone protein acetylation and both chronological and replicative life span in yeast. We hope that in the future, the results can be applied to aging-related diseases, such as diabetes mellitus and cancer, in higher organisms and also humans. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:54:11Z (GMT). No. of bitstreams: 1 ntu-100-D92421003-1.pdf: 4101869 bytes, checksum: d783f6632b114fe02a2c420f94806410 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 o
誌謝 i 目錄 ii 中文摘要 v 英文摘要 vii 第一章 緒論 (Introduction) 1 1.1 模式生物--酵母菌 (Model Organism--Yeast) 2 1.2蛋白質微陣列晶片 (Protein Microarray) 6 1.3蛋白質轉譯後修飾 (Protein Post-Translational Modification) 9 1.4 蛋白質賴氨酸乙醯化 (Protein Lysine Acetylation) 13 1.5 存活壽命 (Life span) 16 1.6 乙醯化與存活壽命 (Acetylation and life span) 19 第二章 葡萄糖新生作用關鍵酵素-PCK1之乙醯化與時間存活壽命 2.1 緒論 (Introduction) 22 2.2 研究方法與材料 (Method and Material) 24 2.3 結果 (Result) 29 第三章 單磷酸腺苷活化蛋白激酶 (AMPK)次單元之乙醯化與複製存活壽命 3.1 緒論 (Introduction) 35 3.2 研究方法與材料 (Method and Material) 38 3.3 結果 (Result) 43 第四章 討論 (Discussion) 4.1 緣起 51 4.2 蛋白質微陣列晶片實驗 54 4.3 利用酵母菌作為老化研究的模式生物 57 4.4 酵母菌老化的定義 59 4.5 乙醯化對葡萄糖新生作用及時間存活壽命的影響 60 4.6 乙醯化對單磷酸腺苷磷酸激酶 (AMPK) 及複製存活壽命的影響 63 4.7 結論 67 第五章 展望 (Prospect) 5.1 緒論 71 5.2基礎研究與臨床應用 74 5.3 未來研究方向 78 第六章 論文英文簡述 (English Summary) 6.1 NuA4 Controls Pck1 to Regulate Gluconeogenesis 81 6.2 NuA4 Acetylation of AMPK Controls Intrinsic Aging 93 表格 104 圖片 113 附錄 博士班修業期間發表相關論文清冊 140 參考文獻 (References) 142 | |
| dc.language.iso | zh-TW | |
| dc.subject | NuA4 | zh_TW |
| dc.subject | 賴氨酸乙醯化 | zh_TW |
| dc.subject | 存活壽命 | zh_TW |
| dc.subject | 蛋白質體微陣列晶片 | zh_TW |
| dc.subject | Sip2 | zh_TW |
| dc.subject | Pck1 | zh_TW |
| dc.subject | 葡萄糖新生 | zh_TW |
| dc.subject | Sip2 | en |
| dc.subject | lysine acetylation | en |
| dc.subject | NuA4 | en |
| dc.subject | gluconeogenesis | en |
| dc.subject | Pck1 | en |
| dc.subject | life span | en |
| dc.subject | Proteome microarray | en |
| dc.title | 乙醯化之蛋白質轉譯後修飾經由調節新陳代謝相關酵素控制存活壽命 | zh_TW |
| dc.title | Protein Post-Translational Acetylation Controls Lifespan through Regulation of Metabolism-Related Enzymes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何橈通(Low-Tone Ho),魏耀揮(Yau-Huei Wei),高嘉宏(Jia-Horng Kao),周祖述(Tzuu-Shuh Jou) | |
| dc.subject.keyword | 蛋白質體微陣列晶片,賴氨酸乙醯化,NuA4,葡萄糖新生,Pck1,存活壽命,Sip2, | zh_TW |
| dc.subject.keyword | Proteome microarray,lysine acetylation,NuA4,gluconeogenesis,Pck1,life span,Sip2, | en |
| dc.relation.page | 153 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-10-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
