請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張靜文(Ching-Wen Chang) | |
| dc.contributor.author | Sing-Yi Li | en |
| dc.contributor.author | 李星儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:51:57Z | - |
| dc.date.available | 2014-03-02 | |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-11-09 | |
| dc.identifier.citation | Abshire, R. L. and Dunton, H. (1981) Resistance of selected strains of Pseudomonas- aeruginosa to low-intensity ultraviolet-radiation, Applied and Environmental Microbiology, 41(6): 1419-1423.
Addiss, D. G., Davis, J. P., Laventure, M., Wand, P. J., Hutchinson, M. A. and McKinney, R. M. (1989) Community acquired Legionnaires disease associated with a cooling tower evidence for longer distance transport of legionella pneumophila, American Journal of Epidemiology, 130(3): 557-568. Ahlen, C., Mandal, L. H., Johannessen, L. N. and Iversen, O. J. (2000) Survival of infectious Pseudomonas aeruginosa genotypes in occupational saturation diving environment and the significance of these genotypes for recurrent skin infections, American Journal of Industrial Medicine, 37(5): 493-500. ASHRAE. (2008) ASHRAE Handbook — HVAC Systems and Equipments: Ultraviolet Lamp Systems. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Chapter 16. Antopol, S. C. and Ellner, P. D. (1979) Susceptibility of Legionella pneumophila to ultraviolet radiation, Applied and Environmental Microbiology, 38(2): 347-348. Arnow, P. M., Chou, T., Weil, D., Shapiro, E. N. and Kretzschmar, C. (1982) Nosocomial Legionnaires disease caused by aerosolized tap water from respiratory devices, Journal of Infectious Diseases, 146(4): 460-467. Awad, A. H. A., Elmorsy, T. H., Tarwater, P. M., Green, C. F. and Gibbs, S. G. (2010) Air biocontamination in a variety of agricultural industry environments in egypt: A pilot study, Aerobiologia, 26(3): 223-232. Barer, M. R., Smith, R. J., Cooney, R. P. and Kimmitt, P. T. (2000) Relationships between culturability, activity and virulence in pathogenic bacteria, Journal of Infection and Chemotherapy, 6(2): 108-111. Bateman, J. B., Stevens, C. L., Mercer, W. B. and Carstensen, E. L. (1962) Relative humidity and the killing of bacteria: The variation of cellular water content with external relative humidity or osmolality, Journal of General Microbiology, 29(2): 207-219. Bauer, M., Mathieu, L., Deloge-Abarkan, M., Remen, T., Tossa, P., Hartemann, P. and Zmirou-Navier, D. (2008) Legionella bacteria in shower aerosols increase the risk of pontiac fever among older people in retirement homes, Journal of Epidemiology and Community Health, 62(10): 913-920. Beggs, C. B., Kerr, K. G., Donnelly, J. K., Sleigh, P. A., Mara, D. D. and Cairns, G. (2000) An engineering approach to the control of Mycobacterium tuberculosis and other airborne pathogens: A UK hospital based pilot study, Transactions of the Royal Society of Tropical Medicine and Hygiene, 94(2): 141-146. Berendt, R. F. (1980) Survival of Legionella pneumophila in aerosols - effect of relative-humidity, Journal of Infectious Diseases, 141(5): 689-689. Bhopal, R. S., Fallon, R. J., Buist, E. C., Black, R. J. and Urquhart, J. D. (1991) Proximity of the home to a cooling-tower and risk of non-outbreak Legionnaires-disease, British Medical Journal, 302(6773): 378-383. Bischoff, W. E., Wallis, M. L., Tucker, B. K., Reboussin, B. A., Pfaller, M. A., Hayden, F. G. and Sherertz, R. J. (2006) 'Gesundheit'! Sneezing, common colds, allergies, and Staphylococcus aureus dispersion, Journal of Infectious Diseases, 194(8): 1119-1126. Blanco, C. and Nunez, M. X. (2010) Endophthalmitis by Pseudomonas aeruginosa. After penetrating keratoplasty, case report with an epidemiological investigation, Biomedica, 30(3): 327-331. Blatny, J. M., Reif, B. A. P., Skogan, G., Andreassen, O., Hoiby, E. A., Ask, E., Waagen, V., Aanonsen, D., Aaberge, I. S. and Caugant, D. A. (2008) Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant, Environmental Science & Technology, 42(19): 7360-7367. Bratu, S., Eramo, A., Kopec, R., Coughlin, E., Ghitan, M., Yost, R., Chapnick, E. K., Landman, D. and Quale, J. (2005) Community-associated methicillin-resistant Staphylococcus aureus in hospital nursery and maternity units, Emerging Infectious Diseases, 11(6): 808-813. Brickner, P. W., Vincent, R. L., First, M., Nardell, E., Murray, M. and Kaufman, W. (2003) The application of ultraviolet germicidal irradiation to control transmission of airborne disease: Bioterrorism countermeasure, Public Health Reports, 118(2): 99-114. Burge, H. A. (1995) Biological contamination of buildings in temperate climates, Health buildings: 239-249. Butler, R. C., Lund, V. and Carlson, D. A. (1987) Susceptibility of Campylobacter-jejuni and Yersinia-enterocolitica to UV-radiation, Applied and Environmental Microbiology, 53(2): 375-378. Buttery, J. P., Alabaster, S. J., Heine, R. G., Scott, S. M., Crutchfield, R. A. and Garland, S. M. (1998) Multiresistant Pseudomonas aeruginosa outbreak in a pediatric oncology ward related to bath toys, Pediatric Infectious Disease Journal, 17(6): 509-513. Cairns, G., Kerr, K. G., Beggs, C. B., Sleigh, P. A., Mooney, L., Keig, P. and Donnelly, J. K. (2001) Susceptibility of burkholderia cepacia and other pathogens of importance in cystic fibrosis to u.V. Light, Letters in Applied Microbiology, 32(3): 135-138. Carratala, J., Gudiol, F., Pallares, R., Dorca, J., Verdaguer, R., Ariza, J. and Manresa, F. (1994) Risk-factors for nosocomial Legionella-pneumophila pneumonia, American Journal of Respiratory and Critical Care Medicine, 149(3): 625-629. CDC. (2003) Guidelines for infection control in dental health-care settings: 2003, Morbidity and Mortality Weekly Report, 52(RR-17): 1-66. Chandrasekhar, D. and Van Houten, B. (2000) In vivo formation and repair of cyclobutane pyrimidine dimers and 6-4 photoproducts measured at the gene and nucleotide level in Escherichia coli, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 450(1-2): 19-40. Chang, C. W., Chou, F. C. and Hung, P. Y. (2010) Evaluation of bioaerosol sampling techniques for Legionella pneumophila coupled with culture assay and quantitative pcr, Journal of Aerosol Science, 41(12): 1055-1065. Chang, C. W., Hwang, Y. H., Cheng, W. Y. and Chang, C. P. (2007) Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water, Journal of Applied Microbiology, 102(6): 1636-1644. Chen, N. T. and Chang, C. W. (2010) Rapid quantification of viable Legionellae in water and biofilm using ethidium monoazide coupled with real-time quantitative PCR, Journal of Applied Microbiology, 109(2): 623-634. Chen, P. S. and Li, C. S. (2005) Sampling performance for bioaerosols by flow cytometry with fluorochrome, Aerosol Science and Technology, 39(3): 231-237. Cheng, Y. S., Barr, E. B., Fan, B. J., Hargis, P. J., Rader, D. J., O'Hern, T. J., Torczynski, J. R., Tisone, G. C., Preppernau, B. L., Young, S. A. and Radloff, R. J. (1999) Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy, Aerosol Science and Technology, 30(2): 186-201. CIE. (2003) Ultraviolet air disinfection, Technical Report, 155. Cohen, P. R. (2008) The skin in the gym: A comprehensive review of the cutaneous manifestations of community-acquired methicillin-resistant Staphylococcus aureus infection in athletes, Clinics in Dermatology, 26(1): 16-26. Collins, F. M. (1971) Relative susceptibility of acid-fast and non-acid-fast bacteria to ultraviolet light, Applied Microbiology, 21(3): 411-&. Cox, C. S. (1987) Relative humidity and temperature, In The aerobiological pathway of microorganisms. John Wiley & Sons, Inc., New York.: 172-205. Deloge-Abarkan, M., Ha, T.-L., Robine, E., Zmirou-Navier, D. and Mathieu, L. (2007) Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH), Journal of Environmental Monitoring, 9(1): 91-97. Dunklin, E. W. and Puck, T. T. (1948) The lethal effect of relative humidity on air-borne bacteria, Journal of Experimental Medicine, 87(2): 87-101. Dutil, S., Veillette, M., Meriaux, A., Lazure, L., Barbeau, J. and Duchaine, C. (2007) Aerosolization of mycobacteria and legionellae during dental treatment: Low exposure despite dental unit contamination, Environmental Microbiology, 9: 2836-2843. Ehrismann, O. (1932) Uber die bactericide wirkung monochromatischen lichtes, Zeitschrift fur hygiene und infektionskrankheiten, 113: 597-628. Elie-Turenne, M. C., Fernandes, H., Mediavilla, J. R., Rosenthal, M., Mathema, B., Singh, A., Cohen, T. R., Pawar, K. A., Shahidi, H., Kreiswirth, B. N. and Deitch, E. A. (2010) Prevalence and characteristics of Staphylococcus aureus colonization among healthcare professionals in an urban teaching hospital, Infection Control and Hospital Epidemiology, 31(6): 574-580. Falk, M., Hartman, K. A. and Lord, R. C. (1963) Hydration of deoxyribonucleic acid. Iii. A spectroscopic study of the effect of hydration on the structure of deoxyribonucleic acid, Journal of the American Chemical Society, 85(4): 391-394. Ferroni, A., Werkhauser-Bertrand, A., Le Bourgeois, M., Beauvais, R., Vrielynck, S., Durand, C., Lenoir, G., Berche, P. and Sermet-Gaudelus, I. (2008) Bacterial contamination in the environment of hospitalised children with cystic fibrosis, Journal of Cystic Fibrosis, 7(6): 477-482. Fields, B. S., Benson, R. F. and Besser, R. E. (2002) Legionella and Legionnaires' disease: 25 years of investigation, Clinical Microbiology Reviews, 15(3): 506-526. Fliermans, C. B., Cherry, W. B., Orrison, L. H., Smith, S. J., Tison, D. L. and Pope, D. H. (1981) Ecological distribution of Legionella pneumophila, Applied and Environmental Microbiology, 41(1): 9-16. Foca, M., Jakob, K., Whittier, S., Della Latta, P., Factor, S., Rubenstein, D. and Saiman, L. (2000) Endemic Pseudomonas aeruginosa infection in a neonatal intensive care unit, New England Journal of Medicine, 343(10): 695-700. Fox, K., Fox, A., Elssner, T., Feigley, C. and Salzberg, D. (2010) MALDI-TOF mass spectrometry speciation of Staphylococci and their discrimination from Micrococci isolated from indoor air of schoolrooms, Journal of Environmental Monitoring, 12(4): 917-923. Fracchia, L., Pietronave, S., Rinaldia, M. and Martinotti, M. G. (2006) Site-related airborne biological hazard and seasonal variations in two wastewater treatment plants, Water Research, 40(10): 1985-1994. Fraser, D. W., Tsai, T. R., Orenstein, W., Parkin, W. E., Beecham, H. J., Sharrar, R. G., Harris, J., Mallison, G. F., Martin, S. M., McDade, J. E., Shepard, C. C. and Brachman, P. S. (1977) Legionnaires disease - description of an epidemic of pneumonia, New England Journal of Medicine, 297(22): 1189-1197. Friedman, S., Spitalny, K., Barbaree, J., Faur, Y. and McKinney, R. (1987) Pontiac fever outbreak associated with a cooling-tower, American Journal of Public Health, 77(5): 568-572. Gates, F. L. (1929) A study of the bactericidal action of ultraviolet light, J Gen Physiol, 13: 231-260. Gilpin, R. W. In Legionella: Proceedings of the 2nd international symposium, edited by C. Thornsberry, (American Society for Microbiology, Washington, 1984). Gray, J. W. (2004) MRSA: The problem reaches paediatrics, Archives of Disease in Childhood, 89(4): 297-298. Green, C. and Scarpino, P. (2002) The use of ultraviolet germicidal irradiation (UVGI) in disinfection of airborne bacteria, Environmental Engineering and Policy, 3(1): 101-107. Grundmann, H., Kropec, A., Hartung, D., Berner, R. and Daschner, F. (1993) Pseudomonas-aeruginosa in a neonatal intensive-care unit - reservoirs and ecology of the nosocomial pathogen, Journal of Infectious Diseases, 168(4): 943-947. Haley, C. E., Cohen, M. L., Halter, J. and Meyer, R. D. (1979) Nosocomial legionnaires disease: A continuing common-source epidemic at wadsworth medical center, Annals of Internal Medicine, 90(4): 583-586. Haley, R. W. and Bregman, D. A. (1982) The role of understaffing and overcrowding in recurrent outbreaks of Staphylococcal infection in a neonatal special-care unit, Journal of Infectious Diseases, 145(6): 875-885. Hambleton, P., Broster, M. G., Dennis, P. J., Henstridge, R., Fitzgeorge, R. and Conlan, J. W. (1983) Survival of virulent Legionella-pneumophila in aerosols, Journal of Hygiene, 90(3): 451-460. Harm, W. (1980) Biological effects of ultraviolet radiation, Cambridge University Press. Cambridge, UK.: 216pp. Heidelberg, J. F., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C. and Colwell, R. R. (1997) Effect of aerosolization on culturability and viability of gram-negative bacteria, Applied and Environmental Microbiology, 63(9): 3585-3588. Hijnen, W. A. M., van der Veer, A.J., Beerendonk, E.F., Medema, G.J. (2004) Increased resistance of environmental anaerobic spores to inactivation by UV, Water Sci. Technol.:Water Supply, 4 (2): 54-61. Hooper, W. L. (1962) Airborne infection - transmission and control - Riley, RL, Ogrady, F, Royal Society of Health Journal, 82(4): 202-202. Hsu, D., Shih, L. M. and Zee, Y. C. (1994) Degradation of ribosomal-RNA in salmonella strains - a novel mechanism to regulate the concentrations of ribosomal-RNA and ribosomes, Journal of Bacteriology, 176(15): 4761-4765. Ishimatsu, S., Miyamoto, H., Hori, H., Tanaka, I. and Yoshida, S. (2001) Sampling and detection of legionella pneumophila aerosols generated from an industrial cooling tower, Annals of Occupational Hygiene, 45(6): 421-427. Jagger, J. (1967) Introduction to research in ultraviolet photobiology, Prentice-Hall, New Jersey, Ch. 4,. Jensen, M. M. (1964) Inactivation of airborne viruses by ultraviolet irradiation, Applied Microbiology, 12(5): 418-&. Jericho, K. W. F., Langford, E. V. and Pantekoek, J. (1977) Recovery of Pasteurella-hemolytica from aerosols at differing temperature and humidity, Canadian Journal of Comparative Medicine-Revue Canadienne De Medecine Comparee, 41(2): 211-214. Jevons, M. P. (1961) “Celbenin”-resistant Staphylococci, British Medical Journal, 1: 124-125. Jindrichova, J., Havlickova, K., Stepanek, O., Udrzal, F. and Otcenasek, M. (1985) Some health problems of the work in large-capacity cowsheds, Pracovni Lekarstvi, 37(3): 89-98. Jones, D. M., Sutcliffe, E. M. and Curry, A. (1991) Recovery of viable but non-culturable Campylobacter-jejuni, Journal of General Microbiology, 137: 2477-2482. Joseph, C. A. and Ricketts, K. D. (2007) From development to success: The European surveillance scheme for travel associated Legionnaires' disease, European Journal of Public Health, 17(6): 652-656. Kamilakis, E. G. and Allen, D. G. (1995) Cultivating filamentous microorganisms in a cyclone bioreactor - the influence of pumping on cell morphology, Process Biochemistry, 30(4): 353-360. Kaprelyants, A. S., Gottschal, J. C. and Kell, D. B. (1993) Dormancy in non-sporulating bacteria, Fems Microbiology Reviews, 104(3-4): 271-286. Katz, S. M. and Hammel, J. M. (1987) The effect of drying, heat, and pH on the survival of Legionella pneumophila, Annals of Clinical and Laboratory Science, 17(3): 150-156. Keller, D. W., Hajjeh, R., DeMaria, A., Fields, B. S., Pruckler, J. M., Benson, R. S., Kludt, P. E., Lett, S. M., Mermel, L. A., Giorgio, C. and Breiman, R. F. (1996) Community outbreak of Legionnaires' disease: An investigation confirming the potential for cooling towers to transmit Legionella species, Clinical Infectious Diseases, 22(2): 257-261. Khojasteh, V. J., Edwards-Jones, V., Childs, C. and Foster, H. A. (2007) Prevalence of toxin producing strains of Staphylococcus aureus in a pediatric burns unit, Burns, 33(3): 334-340. King, B., Kesavan, J. and Sagripanti, J. L. (2011) Germicidal UV sensitivity of bacteria in aerosols and on contaminated surfaces, Aerosol Science and Technology, 45(5): 645-653. Knudson, G. B. (1985) Photoreactivation of UV-irradiated Legionella-pneumophila and other Legionella species, Applied and Environmental Microbiology, 49(4): 975-980. Ko, G., First, M. W. and Burge, H. A. (2000) Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobacterium bovis BCG aerosols, Tubercle and Lung Disease, 80(4-5): 217-228. Koller, L. R. (1939) Bactericidal effects of ultraviolet radiation produced by low pressure mercury vapor lamps, Journal of Applied Physics, 10(9): 624-630. Kowalski, W. J. and Bahnfleth, W. P. (2000) UVGI design basics for air and surface disinfection, Heating/piping/air conditioning engineering, 72(1527-4055): 100-110. Kowalski, W. J., Bahnfleth, W. P. and Rosenberger, J. L. (2003) Dimensional analysis of uvgi air disinfection systems, Hvac&R Research, 9(3): 347-362. Lai, M. H., Moschandreas, D. J. and Pagilla, K. R. (2003) Airborne bacteria control under chamber and test-home conditions, Journal of Environmental Engineering-Asce, 129(3): 202-208. Leoni, E. and Legnani, P. P. (2001) Comparison of selective procedures for isolation and enumeration of Legionella species from hot water systems, Journal of Applied Microbiology, 90(1): 27-33. Leung, M. and Chan, A. H. S. (2006) Control and management of hospital indoor air quality, Medical Science Monitor, 12(3): SR17-SR23. Li, C. S., Hao, M. L., Lin, W. H., Chang, C. W. and Wang, C. S. (1999) Evaluation of microbial samplers for bacterial microorganisms, Aerosol Science and Technology, 30(2): 100-108. Li, C. S., Tseng, C. C., Lai, H. H. and Chang, C. W. (2003) Ultraviolet germicidal irradiation and titanium dioxide photocatalyst for controlling Legionella pneumophila, Aerosol Science and Technology, 37(12): 961-966. Lidwell, O. M., Brock, B., Shooter, R. A., Cooke, E. M. and Thomas, G. E. (1975) Airborne infection in a fully air-conditioned hospital: IV. Airborne dispersal of Staphylococcus-aureus and its nasal acquisition by patients, Journal of Hygiene, 75(3): 445-474. Lin, C. Y. and Li, C. S. (2002) Control effectiveness of ultraviolet germicidal irradiation on bioaerosols, Aerosol Science and Technology, 36(4): 474-478. Lin, X. J., Willeke, K., Ulevicius, V. and Grinshpun, S. A. (1997) Effect of sampling time on the collection efficiency of all-glass impingers, American Industrial Hygiene Association Journal, 58(7): 480-488. Lleo, M. d. M., Signoretto, C. and Canepari, P. (2006) Gram-positive bacteria in the marine environment, Oceans and Health: Pathogens in the Marine Environment: 307-330. Luckiesh, M. (1946) Applications of germicidal, erythemal and infrared energy, New York: D. Van Nostrand Company, Inc. Macher, J. M., Alevantis, L. E., Chang, Y. L. and Liu, K. S. (1992) Effect of ultraviolet germicidal lamps on airborne microorganisms in an outpatient waiting room, Applied Occupational and Environmental Hygiene, 7(8): 505-513. Marthi, B., Fieland, V. P., Walter, M. and Seidler, R. J. (1990) Survival of bacteria during aerosolization, Applied and Environmental Microbiology, 56(11): 3463-3467. Martin, S. B., Dunn, C., Freihaut, J. D., Bahnfleth, W. P., Lau, J. and Nedeljkovic-Davidovic, A. (2008) Ultraviolet germicidal irradiation - Current best practices, Ashrae Journal, 50(8): 28-36. McDougald, D., Rice, S. A., Weichart, D. and Kjelleberg, S. (1998) Nonculturability: Adaptation or debilitation?, Fems Microbiology Ecology, 25(1): 1-9. Menetrez, M. Y., Foarde, K. K., Dean, T. R. and Betancourt, D. A. (2010) The effectiveness of uv irradiation on vegetative bacteria and fungi surface contamination, Chemical Engineering Journal, 157(2-3): 443-450. Misterlich, E., Marth, E.T. (1984) Microbial survival in the environment, Berlin: Springer-Verlag. Moodley, A., Nightingale, E. C., Stegger, M., Nielsen, S. S., Skov, R. L. and Guardabassi, L. (2008) High risk for nasal carriage of methicillin-resistant Staphylococcus aureus among danish veterinary practitioners, Scandinavian Journal of Work Environment & Health, 34(2): 151-157. Morey, P. R., Feeley, J. C. S. and Otten, J. A. (1990) Biological contaminants in indoor environments, American Society for Testing Materials, Washington, D.C. Moschandreas, D. J., Pagilla, K. R. and Storino, L. V. (2003) Time and space uniformity of indoor bacteria concentrations in chicago area residences, Aerosol Science and Technology, 37(11): 899-906. Muraca, P., Stout, J. E. and Yu, V. L. (1987) Comparative-assessment of chlorine, heat, ozone, and UV-light for killing legionella-pneumophila within a model plumbing system, Applied and Environmental Microbiology, 53(2): 447-453. Nandalal, P. and Somashekar, R. K. (2007) Prevalence of Staphylococcus aureus and Pseudomonas aeruginosa in indoor air flora of a district hospital, mandya, karnataka, Journal of Environmental Biology, 28(2): 197-200. Nicas, M. (1996) Estimating exposure intensity in an imperfectly mixed room, American Industrial Hygiene Association Journal, 57(6): 542-550. Noakes, C. J., Fletcher, L. A., Beggs, C. B., Sleigh, P. A. and Kerr, K. G. (2004) Development of a numerical model to simulate the biological inactivation of airborne microorganisms in the presence of ultraviolet light, Journal of Aerosol Science, 35(4): 489-507. Noble, W. C. (1962) Dispersal of Staphylococci in hospital wards, Journal of Clinical Pathology, 15(6): 552-&. Nygard, K., Werner-Johansen, O., Ronsen, S., Caugant, D. A., Simonsen, O., Kanestrom, A., Ask, E., Ringstad, J., Odegard, R., Jensen, T., Krogh, T., Hoiby, E. A., Ragnhildstveit, E., Aarberge, I. S. and Aavitsland, P. (2008) An outbreak of Legionnaires disease caused by long-distance spread from an industrial air scrubber in sarpsborg, norway, Clinical Infectious Diseases, 46(1): 61-69. O'Neill, E. and Humphreys, H. (2005) Surveillance of hospital water and primary prevention of nosocomial Legionellosis: What is the evidence?, Journal of Hospital Infection, 59(4): 273-279. Oguma, K., Katayama, H. and Ohgaki, S. (2004) Photoreactivation of Legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp, Water Research, 38(11): 2757-2763. Oliver, J. D. (2005) The viable but nonculturable state in bacteria, Journal of Microbiology, 43: 93-100. Panagea, S., Winstanley, C., Walshaw, M. J., Ledson, M. J. and Hart, C. A. (2005) Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a liverpool cystic fibrosis centre, and study of its survival on dry surfaces, Journal of Hospital Infection, 59(2): 102-107. Pascual, L., Perez-Luz, S., Amo, A., Moreno, C., Apraiz, D. and Catalan, V. (2001) Detection of Legionella pneumophila in bioaerosols by polymerase chain reaction, Canadian Journal of Microbiology, 47(4): 341-347. Patrick, M. H. and Gray, D. M. (1976) Independence of photoproduct formation on DNA conformation, Photochemistry and Photobiology, 24(6): 507-513. Peccia, J. and Hernandez, M. (2001b) Photoreactivation in airborne mycobacterium parafortuitum, Applied and Environmental Microbiology, 67(9): 4225-4232. Peccia, J., Werth, H. M., Miller, S. and Hernandez, M. (2001a) Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria, Aerosol Science and Technology, 35(3): 728-740. Pereira, V. J., Fernandes, D., Carvalho, G., Benoliel, M. J., Romao, M. V. S. and Crespo, M. T. B. (2010) Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods, Water Research, 44(17): 4850-4859. Philips. (2005) UV purification - application information. Porter, J., Edwards, C. and Pickup, R. W. (1995) Rapid assessment of physiological status in Escherichia coli using fluorescent probes, Journal of Applied Bacteriology, 79(4): 399-408. Qian, Y. G., Willeke, K., Ulevicius, V., Grinshpun, S. A. and Donnelly, J. (1995) Dynamic size spectrometry of airborne microorganisms - laboratory evaluation and calibration, Atmospheric Environment, 29(10): 1123-1129. Rahn, R. O. and Landry, L. C. (1971) Pyrimidine dimer formation in poly (d-dt) and apurinic acid, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 247(2): 197-206. Rainbow, A. J. and Mak, S. (1973) DNA damage and biological function of human adenovirus after UV irradiation, International Journal of Radiation Biology, 24(1): 59-72. Ratnam, S., Hogan, K., March, S. B. and Butler, R. W. (1986) Whirlpool-associated folliculitis caused by Pseudomonas aeruginosa - report of an outbreak and review, Journal of Clinical Microbiology, 23(3): 655-659. Reagan, D. R., Doebbeling, B. N., Pfaller, M. A., Sheetz, C. T., Houston, A. K., Hollis, R. J. and Wenzel, R. P. (1991) Elimination of coincident Staphylococcus aureus nasal and hand carriage with intranasal application of mupirocin calcium ointment, Annals of Internal Medicine, 114(2): 101-106. Rentschler, H. C. and Nagy, R. (1940) Advantages of bactericidal ultraviolet radiation in air conditioning systems, Heating, Piping, Air Conditioning, 12: 127-130. Rentschler, H. C. and Nagy, R. (1942) Bactericidal action of ultraviolet radiation on air-borne organisms, Journal of Bacteriology, 44(1): 85-94. Rentschler, H. C., Nagy, R. and Mouromseff, G. (1941) Bactericidal effect of ultraviolet radiation, Journal of Bacteriology, 41(6): 745-774. Riley, R. L. and Kaufman, J. E. (1972) Effect of relative humidity on inactivation of airborne Serratia marcescens by ultraviolet-radiation, Applied Microbiology, 23(6): 1113-&. Roig, J., Aguilar, X., Ruiz, J., Domingo, C., Mesalles, E., Manterola, J. and Morera, J. (1991) Comparative-study of Legionella-pneumophila and other nosocomial-acquired pneumonias, Chest, 99(2): 344-350. Ryan, K., McCabe, K., Clements, N., Hernandez, M. and Miller, S. L. (2010) Inactivation of airborne microorganisms using novel ultraviolet radiation sources in reflective flow-through control devices, Aerosol Science and Technology, 44(7): 541-550. Sancar, A. (1994) Structure and function of DNA photolyase, Biochemistry, 33(1): 2-9. Sancar, G. B. (2000) Enzymatic photoreactivation: 50 years and counting, Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 451(1-2): 25-37. Sharp, D. G. (1939) The lethal action of short ultraviolet rays on several common pathogenic bacteria, Journal of Bacteriology, 37(4): 447-460. Sharp, D. G. (1940) The effects of ultraviolet light on bacteria suspended in air, Journal of Bacteriology, 39(5): 535-547. Sherertz, R. J., Reagan, D. R., Hampton, K. D., Robertson, K. L., Streed, S. A., Hoen, H. M., Thomas, R. and Gwaltney, J. M. (1996) A cloud adult: The staphylococcus aureus - virus interaction revisited, Annals of Internal Medicine, 124(6): 539-547. Smith, K. C. (1978) Multiple pathways of DNA-repair in bacteria and their roles in mutagenesis, Photochemistry and Photobiology, 28(2): 121-129. Sommer, R., Haider, T., Cabaj, A., Pribil, W. and Lhotsky, M. (1998) Time dose reciprocity in UV disinfection of water, Water Science and Technology, 38(12): 145-150. Sommer, R., Lhotsky, M., Hairder, T. and Cabaj, A. (2000) UV inactivation, liquid-holding recovery, and photoreaction of E. coli O157 and other pathogenic E. coli strains in water, J. Food Prot., 63(8): 1015-1020. Sommer, R., Weber, G., Cabaj, A., Wekerle, J., Keck, G. and Schauberger, G. (1989) UV-inactivation of microorganisms in water, Zentralblatt Fur Hygiene Und Umweltmedizin, 189(3): 214-224. Stanier, R. Y., Ingraham, J. L., Wheelis, M. L. and Painter, P. R. (1976) The microbial world. 5th ed. New jersey: Prentice-hall: 183-195. Steinert, M., Emody, L., Amann, R. and Hacker, J. (1997) Resuscitation of viable but nonculturable Legionella pneumophila philadelphia JR32 by Acanthamoeba castellanii, Applied and Environmental Microbiology, 63(5): 2047-2053. Stewart, S. L., Grinshpun, S. A., Willeke, K., Terzieva, S., Ulevicius, V. and Donnelly, J. (1995) Effect of impact stress on microbial recovery on an agar surface, Applied and Environmental Microbiology, 61(4): 1232-1239. Su, H. P., Tseng, L. R., Tzeng, S. C., Chou, C. Y. and Chung, T. C. (2006) A Legionellosis case due to contaminated SPA water and confirmed by genomic identification in Taiwan, Microbiology and Immunology, 50(5): 371-377. Summer, W. (1962) Ultraviolet and infrared engineering, Interscience Publishers, 197: 202-203. Thompson, K. A., Bennett, A. M. and Walker, J. T. (2011) Aerosol survival of Staphylococcus epidermidis, Journal of Hospital Infection, 78(3): 216-220. Tosa, K. and Hirata, T. (1999) Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection, Water Research, 33(2): 361-366. Wainwright, C. E., France, M. W., O'Rourke, P., Anuj, S., Kidd, T. J., Nissen, M. D., Sloots, T. P., Coulter, C., Ristovski, Z., Hargreaves, M., Rose, B. R., Harbour, C., Bell, S. C. and Fennelly, K. P. (2009) Cough-generated aerosols of Pseudomonas aeruginosa and other gram-negative bacteria from patients with cystic fibrosis, Thorax, 64(11): 926-931. Walker, C. M. and Ko, G. (2007) Effect of ultraviolet germicidal irradiation on viral aerosols, Environmental Science & Technology, 41(15): 5460-5465. Wang, L., Li, Y. and Mustapha, A. (2009) Detection of viable Escherichia coli O157:H7 by ethidium monoazide real-time PCR, Journal of Applied Microbiology, 107(5): 1719-1728. Webb, S. J., Cormack, D. V. and Morrison, H. G. (1964) Relative humidity, inositol and the effect of radiations on air-dried microorganisms, Nature, 201: 1103-1105. Webb, S. J. (1959) Factors affecting the viability of air-borne bacteria: I. Bacteria aerosolized from distilled water, Canadian Journal of Microbiology, 5(6): 649-669. Wells, W. F. and Wells, M. W. (1936) Air-borne infection, Journal of the American Medical Association, 107: 1698-+. Wells, W. F., Wells, M. W. and Wilder, T. S. (1942) The environmental control of epidemic contagion I An epidemiologic study of radiant disinfection of air in day schools, American Journal of Hygiene, 35(1): 97-121. Willeke, K., Lin, X. and Grinshpun, S. A. (1998) Improved aerosol collection by combined impaction and centrifugal motion, Aerosol Science and Technology, 28(5): 439-456. Williams, R. E. (1963) Healthy carriage of Staphylococcus aureus - its prevalence and importance, Bacteriological Reviews, 27(1): 56-58. Wilson, B. R., Roessler, P.F., van Dellen, E., Abbaszadegan, M., and Gerba, C. P. (1992) Coliphage MS2 as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens. In: Proceedings of the American water works association water quality technology conference. Won, W. D. and Ross, H. (1966) Effect of diluent and relative humidity on apparent viability of airborne Pasteurella pestis, Applied Microbiology, 14(5): 742-745. WHO, Water Recreation and Disease 2005:76-92. Xu, P., Kujundzic, E., Peccia, J., Schafer, M. P., Moss, G., Hernandez, M. and Miller, S. L. (2005) Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria, Environmental Science & Technology, 39(24): 9656-9664. 行政院衛生署疾病管制局,台灣院內感染監視資訊系統,2009 http://www.cdc.gov.tw/lp.asp?ctNode=2619&CtUnit=915&BaseDSD=7&mp=1 行政院衛生署疾病管制局,臨床微生物電顯圖譜,吳和生等人,2009 行政院勞工委員會勞工安全衛生研究所研究報告—作業環境非游離輻射-紫外線危害評估技術探討,IOSH96-H309,2008 行政院衛生署疾病管制局,傳染病統計資料查詢系統,2010 http://nidss.cdc.gov.tw/SingleDisease.aspx?Pt=s&dc=1&dt=3&disease=4828&d=3&i=all&s=determined_cnt&rk=W | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66697 | - |
| dc.description.abstract | 金黃色葡萄球菌(Staphylococcus aureus)、綠膿桿菌(Pseudomonas aeruginosa)以及嗜肺性退伍軍人菌(Legionella pneumophila)為造成院內感染之致病菌,而空氣中含有致病性之生物氣膠,經人體吸入後可導致肺囊性纖維化(Cystic fibrosis, CF)或是引發退伍軍人症(Legionnaires’ disease)。因此,需有效控制感染性生物氣膠以避免民眾或工作人員之感染風險。紫外線照射殺菌(Ultraviolet germicidal irradiation, UVGI)為一可有效控制空氣中病原菌之技術,但受空氣中相對濕度(Relative humidity, RH)之影響,且對不同病原性細菌有不同之效應,而目前對S. aureus、P. aeruginosa與L. pneumophila之作用所知有限。因此本研究於實驗室內建置生物氣膠UVGI評估系統,透過AGI-30採樣(10與30分鐘)與培養法分析,探討S. aureus、P. aeruginosa與L. pneumophila在不同RH(12.7-90%)以及UV暴露下之UVGI效能。
結果發現,在未開啟紫外燈時,UV元件內之旋轉作用力可導致生物可培養濃度下降,P. aeruginosa與L. pneumophila下降程度分別為0.7-1.5 log值(80-96.8%)與0.6-1.7 log值(74.9-98%),顯著大於S. aureus為 0.2-0.6 log值(37-74.9%)(p < 0.05)。且對P. aeruginosa與L. pneumophila而言,滯留於UV元件之時間增長時,可培養濃度log下降值也顯著增加(p = 0.0009與p < 0.0001),至多達2倍。 UVGI殺菌效能評估方面,使用UV劑量範圍為7,140-171,632 μW/cm2,而當RH自12.7-16.7%增加至87.3-90%時,S. aureus、P. aeruginosa與L. pneumophila之UVGI效能分別從下降4-4.9 log值(99.99-99.999%)降至1.7-3.1 log值(98-99.9%)、4.4-4.9 log值(99.996-99.999%)降至2.3-3.8 log值(99.5-99.98%)以及3.7-4.3 log值(99.98-99.995%)降至2.2-3.6 log值(99.4-99.97%),與RH呈統計顯著之負向關係(r = -0.81~-0.74)(皆p < 0.0001)。而S. aureus、P. aeruginosa與L. pneumophila之幾何平均氣動粒徑(0.65-0.7 μm、0.62-0.65 μm與0.59-0.7 μm)亦隨RH增加而增加(r = 0.55~0.72)(皆p < 0.0001)。另外,當UV暴露時間自8.1秒增至13.6秒時,S. aureus、P. aeruginosa與L. pneumophila之UVGI殺菌效能亦顯著上升,呈現劑量效應關係(p = 0.002、0.074與0.0009)。在菌種別部份,合併中RH(58.7-59.6%)與高RH(87.3-90%)之UVGI殺菌效能數據觀之,以對S. aureus效能顯著小於對P. aeruginosa與L. pneumophila之影響(p < 0.05);然於低RH(12.7-16.7%)時以對L. pneumophila之殺菌效能最差(p < 0.05)。另外,採樣10分鐘所得之UVGI殺菌效能高於採樣30分鐘者,且以對L. pneumophila較具影響性(p = 0.064)。由於增加採樣時間可使菌種培養濃度下降,因而造成提高UVGI效能之假象,故在評估UVGI殺菌效能時,應選擇適當之採樣時間以避免錯誤評估。 總結來說,在UVGI殺菌效能評估中,以RH與UV暴露劑量為最重要影響因子(p < 0.0001與p < 0.0001),其次為採樣時間與菌種(p = 0.012與p = 0.07)。由於RH增加導致S. aureus、P. aeruginosa與L. pneumophila之UVGI效能下降,故當應用UVGI殺菌法於室內場所時,應妥適控制RH(< 60%)以達有效殺菌效果。 | zh_TW |
| dc.description.abstract | The nosocomial transmission of Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila could induce cystic fibrosis or Legionnaires’ disease through inhalation aerosolized pathogens in the hospital.Therefore, it is important to reduce airborne pathogens in the environments in order to ensure workers and the publics’ health. Ultraviolet germicidal irradiation (UVGI) systems were used to control airborne pathogenic organisms. In response to the limited data available regarding the relationship between relative humidity (RH) and UV inactivation of airborne pathogenic organisms, we attempted to evaluate UVGI effectiveness of different RH, UV exposure doses and airborne pathogenic organisms of S. aureus, P. aeruginosa and L. pneumophila in a laboratory chamber setting with AGI-30 for 10 and 30 min by culture assay.
Our results indicated that log reduction of P. aeruginosa and L. pneumophila were 0.7-1.5 log unit (80-96.8%) and 0.6-1.7 log unit (74.9-98%) greater than S. aureus were 0.2-0.6 log unit (37-74.9%) (p < 0.05) by swirling motion at UV-off setting. In addition, when the time of bioaerosol remain in UV unit was increase then the log reduction of P. aeruginosa and L. pneumophila was increased as high as 2 times at UV-off (p = 0.0009 and < 0.0001, respectively). In regard to UVGI effectiveness, the UVGI dosage ranged were 7,140-171,632 μW/cm2, it was observed that germicidal efficiency decreased from RH 12.7-16.7% to RH 87.3-90% of S. aureus, P. aeruginosa and L. pneumophila were 4-4.9 log unit (99.99-99.999%) to 1.7-3.1 log unit (98-99.9%), 4.4-4.9 log unit (99.996-99.999%) to 2.3-3.8 log unit (99.5-99.98%) and 3.7-4.3 log unit (99.98-99.995%) to 2.2-3.6 log unit (99.4-99.97%), respectively (r = -0.81~-0.74) (all p < 0.0001). In addition, aerodynamic diameter increase as RH increases for S. aureus, P. aeruginosa and L. pneumophila (0.65-0.7 μm, 0.62-0.65 μm and 0.59-0.7 μm) (r = 0.55~0.72) (all p < 0.0001). Moreover, UV exposure time was from 8.1s to 13.6s with increasing UVGI effectiveness for S. aureus, P. aeruginosa and L. pneumophila in a dose-response matter (p = 0.002, 0.074 and 0.0009, respectively). Significantly, the microorganism susceptibilities by UVGI of P. aeruginosa and L. pneumophila were greater than S. aureus at moderate (58.7-59.6%) and high RH (87.3-90%) (p < 0.05). However, the microorganism susceptibilities by UVGI of L. pneumophila were the lowest at low RH (12.7-16.7%) (p < 0.05). On the other hand, it was found that 30-min sampling was significantly greater than 10-min for L. pneumophila by UVGI effect (p = 0.064). The longer sampling time results in the higher vulnerability of culturable cells, not because of the increasing of the UVGI efficiency. In conclusion, UVGI effectiveness strongly depends on RH and UV exposure doses (p < 0.0001 and p < 0.0001), followed by microorganism species and sampling time, which were weakly relationship with UVGI effectiveness (p = 0.012 and p = 0.07). It was observed that germicidal efficiency decreased as RH increased in S. aureus, P. aeruginosa and L. pneumophila. Our study suggests that RH have a great effect on UVGI efficacy. Therefore, the RH should be maintained lower than 60% in order to higher the germicidal effectiveness, when the UVGI systems are applied in the indoor environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:51:57Z (GMT). No. of bitstreams: 1 ntu-100-R98844010-1.pdf: 905176 bytes, checksum: 071b75a7e99837c9f34084b5beb73fe4 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 I
Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 前言 1 1.1 研究背景 1 第二章 文獻回顧 3 2.1 紫外線照射殺菌 3 2.2 紫外線殺菌法應用於空氣中之病源菌 5 2.3 影響紫外線殺菌效能之因子 8 2.3.1 紫外線暴露劑量 8 2.3.2 相對溼度 14 2.3.3 微生物物種 17 2.3.4 生物氣膠採樣方法 22 2.4 金黃色葡萄球菌與綠膿桿菌 26 2.4.1 生物特性 26 2.4.2 環境分佈 26 2.4.3 健康影響 27 2.4.4 Staphylococcus aureus與Pseudomonas aeruginosa之UVGI研究 33 2.5 退伍軍人菌 34 2.5.1 生物特性 34 2.5.2 環境分佈 34 2.5.3 健康影響 35 2.5.4 Legionella pneumophila之UVGI研究 36 第三章 研究目的 37 第四章 研究架構 38 4.1 研究設計 38 第五章 方法與材料 41 5.1 實驗菌種 41 5.2 培養介質 41 5.2.1 Tryptic soy agar (TSA) 41 5.2.2 Nutrient broth 41 5.2.3 BCYEα agar 41 5.2.4 BYEα broth 42 5.2.5 Phosphate buffer saline (PBS) 42 5.3 細菌懸浮液之置備 43 5.4 生物氣膠UV殺菌系統裝置 43 5.5 UV元件、UV光強度與光衰減 48 5.6 UV殺菌評估系統測試 50 5.6.1 空氣流量 50 5.6.2 相對溼度 50 5.6.3 生物氣膠濃度與粒徑 50 5.7 微粒於UV元件之滯留時間 52 5.8 微粒於UV元件之貫穿率 53 5.9 生物氣膠採樣與分析 54 5.10 UV-off之可培養濃度log下降值與UVGI效能評估 56 5.11 統計方法 57 第六章 結果 58 6.1 UV殺菌評估系統測試 58 6.1.1 空氣流量 58 6.1.2 相對溼度 59 6.1.3 生物氣膠濃度 60 6.2 UV元件之物理特性 62 6.2.1 氣膠滯留UV元件時間 62 6.2.2 生物氣膠於UV元件之貫穿率 64 6.2.3 UV光強度與光衰減 65 6.3 生物氣膠粒徑 66 6.4 UV-off之可培養濃度log下降值 73 6.5 UVGI殺菌效能 78 6.6 UVGI殺菌效能與UV-off時之可培養濃度log下降值之比值 86 第七章 討論 92 7.1 影響UV-off時之可培養濃度之因子 92 7.2 UVGI之影響因子 93 7.2.1 相對溼度 93 7.2.2 UV暴露時間 98 7.2.3 微生物物種 99 7.2.4 採樣時間 103 7.2.5 UV暴露劑量 104 第八章 結論與建議 107 8.1 結論 107 8.2 建議 108 參考文獻 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物氣膠 | zh_TW |
| dc.subject | 金黃色葡萄球菌 | zh_TW |
| dc.subject | 綠膿桿菌 | zh_TW |
| dc.subject | 嗜肺性退伍軍人菌 | zh_TW |
| dc.subject | 紫外線殺菌 | zh_TW |
| dc.subject | 相對溼度 | zh_TW |
| dc.subject | UV暴露劑量 | zh_TW |
| dc.subject | 採樣時間 | zh_TW |
| dc.subject | 可培養性 | zh_TW |
| dc.subject | culture | en |
| dc.subject | bioaerosl | en |
| dc.subject | Staphylococcus aureus | en |
| dc.subject | Pseudomonas aeruginosa | en |
| dc.subject | Legionella pneumophila | en |
| dc.subject | Ultraviolet germicidal irradiation (UVGI) | en |
| dc.subject | relative humidity | en |
| dc.subject | UV dose | en |
| dc.subject | sampling time | en |
| dc.title | 紫外線控制感染性生物氣膠之效能評估 | zh_TW |
| dc.title | Ultraviolet Germicidal Irradiation on Bacterial Pathogens in Air | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪明瑞(Ming-Jui Hung),黃盛修(Sheng-Hsiu Huang) | |
| dc.subject.keyword | 生物氣膠,金黃色葡萄球菌,綠膿桿菌,嗜肺性退伍軍人菌,紫外線殺菌,相對溼度,UV暴露劑量,採樣時間,可培養性, | zh_TW |
| dc.subject.keyword | bioaerosl,Staphylococcus aureus,Pseudomonas aeruginosa,Legionella pneumophila,Ultraviolet germicidal irradiation (UVGI),relative humidity,UV dose,sampling time,culture, | en |
| dc.relation.page | 127 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-11-10 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 883.96 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
