Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑
dc.contributor.authorJhu-Rong Syuen
dc.contributor.author許筑鎔zh_TW
dc.date.accessioned2021-06-17T00:51:53Z-
dc.date.available2012-01-17
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-11-10
dc.identifier.citation[1] Masaharu Ito, Shuya Kishimotoand, Yasuhiro Hamada, and Kenichi Maruhashi, “A 60-GHz-band 12-multiplier MMIC with reduced power consumption,” in IEEE Trans. Microw. Theory Tech., vol. 54, no.12, pp. 4522-4527, Dec. 2006.
[2] Herbert Zirath, Toru Masuda, Rumen Kozhuharov, and Mattias Ferndahl, “Development of 60-GHz front-end circuits for a high-data-rate communication system,“ in IEEE Journal of Solid-State Circuits, vol. 39, no. 10, pp. 1640-1649, Oct. 2004.
[3] Camilla Kärnfelt, Rumen Kozhuharov, Herbert Zirath, and Iltcho Angelov, “High-purity 60-GHz-band single-chip 8 multipliers in pHEMT and mHEMT technology,“ in IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2887-2898, Jun. 2006.
[4] Hans Peter Forstner, Florian Starzer, Günter Haider, Christoph Wagner, and Martin Jahn, “Frequency quadruplers for a 77 GHz subharmonically pumped automotive radar transceiver in SiGe,“ in Proc. of 4th European Microwave Conf., Sept. 2009, pp. 188-191.
[5] Mattias Femdahl, Bahar M. Motlagh, and Herbert Zirath, “40 and 60 GHz frequency doublers in 90-nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, Jun. 2004, pp. 179-182.
[6] Kenjiro Nishikawa, Takatomo Enoki, Suehiro Sugitani, Ichihiko Toyoda, and Koichi Tsunekawa, “Low-voltage and broadband V-band InP HEMT frequency doubler MMIC,” in IEEE MTT-S Int. Dig., Jun. 2005, pp. 45-48.
[7] Sohrab Emami, Chinh H. Doan, Ali M. Niknejad, and Robert W. Brodersen, “A highly integrated 60 GHz CMOS front-end receiver,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 190-191.
[8] Dong Yun Jung, and Chul Soon Park, ”Low-power, high-suppression V-band frequency doubler in 0.13 um CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 551-553, Aug. 2008.
[9] C.Wang and V.Fusco, “High-purity 56 – 66GHz quadrupler for V-band radio homodyne and heterodyne transceiver applications,” in IEEE International SOC Conference, Sept. 2009, pp. 203–205.
[10] Shoichi Hara, Takahiro Sato, Rui Murakami, Kenichi Okada, and Akira Matsuzawa, “60 GHz injection locked frequency quadrupler with quadrature outputs in 65 nm CMOS process,” in IEEE Asia Pacific Microwave Conference, Dec. 2009, pp. 2268–2271.
[11] Nai-Chung Kuo, Zuo-Min Tsai, Klaus Schmalz, Johann Christoph Scheytt, and Huei Wang, “A 52-75 GHz frequency quadrupler in 0.25-μm SiGe BiCMOS process,” in Proc. of 4th European Microwave Conf., Sept. 2009, pp. 188-191.
[12] David M. Pozar, Microwave Engineering 3/e. John Wiley & Sons, 2005.
[13] Jihoon Kim, Wooyeol Choi, Youngrak Park, and Youngwoo Kwon, “60 GHz broadband image rejection receiver using varactor tuning,“ in IEEE RFIC Symp., May. 2010, pp. 381 - 384.
[14] Shuan Ming Li, Che Yu Kuo, and Hsien Chin Chiu, “A 24 GHz sub-harmonically image rejection mixer with various asymmetrical diode pair,“ in IEEE ICMMT., May. 2010, pp. 521 - 524.
[15] Po-Yu Ke, Che-Yu Kuo, Wei-Hsun Huang, Chine-Cheng Wei, Ming-yang Chen, Hsien-Chin Chiu, Jeffrey S. Fu, and Yi-Chyun Chiang, “A fully integrated 24 GHz sub-harmonic image rejection mixer with quadrature coupler,“ in IEEE APMC., Dec. 2008, pp. 1 – 4
[16] Chin-Shen Lin, Hong-Yeh Chang, Pei-Si Wu, Kun-You Lin, and Huei Wang, “A 35 - 50 GHz IQ-demodulator in 0.13-um CMOS technology,“ in IEEE MTT-S Int. Microw. Symp., pp. 1397 - 1400.
[17] Jeng-Han Tsai, and Tian-Wei Huang, “35 – 65 GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,“ in IEEE Trans. Microw. Theory Tech., vol. 55, no.10, pp. 2075 - 2085, Oct. 2007.
[18] Wei-Heng Lin, Wei-Lun Chang, Jeng-Han Tsai, and Tian-Wei Huang, “A 30 – 60 GHz CMOS sub-harmonic IQ de/modulator for highdata-rate communication system applications,” in IEEE RWS Symp., Jan. 2009, pp. 462-465.
[19] Kwang-Jin Koh, and Gabriel M. Rebeiz, “0.13-um CMOS phase shifters for X-, Ku-, and K-Band phased arrays,” in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[20] Brad R. Jackson, and Carlos E. Saavedra, “A CMOS Ku-band 4x subharmonic mixer,“ in IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1351 - 1359, Jun. 2008.
[21] Farbod Behbahani, Yoji Kishigami, John Leete, and Asad A. Abidi, “CMOS mixers and polyphase filters for large image rejection,“ in IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 873 - 887, June. 2001.
[22] Klaus Schmalz, Wolfgang Winkler, Johannes Borngraber, Wojciech Debski, Bernd Heinemann, and J. Christoph Scheytt, “A subharmonic receiver in SiGe technologyfor 122 GHz sensor applications,“ in IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1644 - 1656, September. 2010.
[23] Kwang-Jin Koh, Mun-Yang Park, Cheon-Soo Kim, and Hyun-Kyu Yu, “Subharmonically pumped CMOS frequency conversion (up and down) circuits for 2-GHz WCDMA direct-conversion transceiver,“ in IEEE Journal of Solid-State Circuits, vol. 39, no. 6, pp. 871-884 June. 2004.
[24] Simon Haykin, Communication Systems 5/E, John Wiley & Sons, 2009.
[25] Razavi Behzad, RF Microelectronics, Prentice Hall, 1997.
[26] Jung-Hau Chen, and Huei Wang, ”A high gain, high power K-band frequency doubler in 0.18 um CMOS process,” in IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, September. 2010.
[27] Kun-You Lin, Jhih-Yu Huang, Chi-Kai Hsieh, and Shih-Chieh Shin, ”A broadband balanced distributed frequency doubler with a sharing collector line,” in IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, September. 2010.
[28] Tsung-Yu Yang and Hwann-Kaeo Chiou, ”A 25–75 GHz miniature double balanced frequency doubler in 0.18-um CMOS technology,” in IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, April. 2008.
[29] Pekka Kangaslahti, Petteri Alinikula, and Veikko Porra, “Miniaturized artificial-transmission-line monolithic millimeter-wave frequency doubler,“ in IEEE Trans. Microw. Theory Tech., vol. 48, no.8, pp. 510 - 518, April. 2000.
[30] Bahar M. Motlagh, Sten E. Gunnarsson, Mattias Ferndahl, and Herbert Zirath, ” Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” in IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25-27, January. 2006.
[31] Sephen A. Maas, “A GaAs MESFET mixer with very low intermodulation,“ in IEEE Trans. Microw. Theory Tech., vol. 35, no.4, pp. 425 - 429, April. 1987.
[32] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer,” in IEEE RFIC Symp. Dig., pp. 163 – 166, Jun. 2005.
[33] Chin-Shen Lin, Pei-Si Wu, Hong-Yeh Chang, and Huei Wang, ” A 9–50-GHz gilbert-cell down-conversion mixer in 0.13-um CMOS technology,” in IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May. 2006.
[34] http://www.sonnettech.com/
[35] http://www.home.agilent.com/agilent/product.jspx?cc=US&lc=eng&ckey=1297113&nid=-34346.0.00&id=1297113
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66696-
dc.description.abstract頻率倍頻器為無線通訊系統中一個重要元件,因為高頻的訊號源較難實現,因此通常以一個低頻的壓控振盪器串接一個頻率倍頻器減少實現的困難度和降低相位雜訊。隨著倍頻數的提升,倍頻器的輸出功率會因為高階的諧波項而降低。因此,要設計一個擁有高輸出功率的高階倍頻器是一大挑戰。在本論文,我們利用90-nm 1P9M CMOS製程設計一個V頻段的四倍頻器,希望能設計一個有高轉換增益、諧波抑制和高輸出功率的四倍頻器。我們串接兩個倍頻器和一個緩衝放大器來實現四倍頻器,並且利用3D的螺旋電感來縮小尺寸。最後成功設計出一個擁有不錯輸出功率的四倍頻器。此四倍頻器在66 GHz有3 dB的轉換增益,且3 dB頻寬從60到70 GHz。而在65 GHz有最大的輸出功率4 dBm,並且諧波抑制都小於30 dB。
為了達到良好的鏡像抑制,正交的相位和相等的振幅對於鏡像抑制混頻器是兩個非常重要的因素。不幸地,製程的變異對於設計一個高鏡像抑制的混頻器是一大挑戰。本論文中,我們利用0.18-um 1P6M CMOS製程設計一個高鏡像抑制的混頻器。傳統的正交產生器對於製程的變異相當敏感,例如: poly-phase filter。為了克服製程的變異,我們提出了一個新的正交產生器,可以利用壓控可變電阻來調整相位和振幅的不平衡。可變電阻則是由NMOS並聯電感共振掉寄生電容來實現,最後設計一個電阻式的混頻器來驗證此架構,在18.5到29 GHz鏡像抑制都有大於30 dB,而最大的鏡像抑制有49.9 dB。
zh_TW
dc.description.abstractFrequency multiplier is an important component in the wireless communication, because the high-frequency sources are difficult to achieve. Therefore, we usually use a low-frequency voltage control oscillator (VCO) cascading with a multiplier to realize the high frequency sources and it also has better phase noise. With the multiple number increases, the output power of the multiplier would decrease gradually because of high order harmonic term. Therefore, it is a big challenge to design a high order multiplier with high output power. In this thesis, a V-band quadrupler is designed and fabricated in the 90-nm 1P9M CMOS technology. The goal of this work is to design a quadrupler with good conversion gain, harmonic suppressions and good output power. Two doublers and a buffer amplifier are cascaded to realize a quadrupler, and three-dimensional spiral inductors are use in this design. The maximum conversion gain is 3 dB at 66 GHz, and 3-dB bandwidth is from 60-to-70 GHz. The maximum output power is 4 dBm at 65 GHz, and harmonic suppressions are all smaller than 30 dB.
To achieve good image rejection ratio, a quadrature generator with good phase and amplitude imbalances is very important for an image reject mixer. Unfortunately, the process variation is a big challenge for designing a high image rejection characteristic. In this thesis, a high image rejection mixer is designed and fabricated in the 0.18-um 1P6M CMOS technology. The conventional quadrature phase generator, poly-phase filter, is very sensitive to the process variation. To overcome process variation, a new quadrature phase generator with tunable resistors which can be adjusted by a control voltage to fine tune the phase and amplitude imbalances is proposed. The tunable resistor is implemented by a NMOS paralleled with an inductor to resonate the parasitic capacitor. A resistive mixer is designed to verify this mechanism of the proposed quadrature phase generator. This mixer demonstrates an image rejection ratio (IRR) of larger than 30 dB from 18.5 to 29 GHz, and the maximum IRR is 49.9 dB.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:51:53Z (GMT). No. of bitstreams: 1
ntu-100-R98942003-1.pdf: 9854415 bytes, checksum: fc839375d3781dbe465c0c665f5ddde8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.2.1 V-band frequency multiplier 2
1.2.2 IQ mixer 3
1.3 Contributions 4
1.4 Thesis Organization 5
Chapter 2 General Background of Frequency Multiplier and Mixer 7
2.1 Background and Motivation 7
2.2 Performance Parameters of Frequency Multiplier and Mixer 8
2.2.1 Performance Parameters of Frequency Multiplier 8
2.2.2 Performance Parameters of Mixer 9
2.3 Architecture of Frequency Multiplier and Mixer 11
2.3.1 Frequency Multiplier 11
2.3.2 Mixer 14
Chapter 3 Design of V-band Quadrupler 19
3.1 Introduction and Motivation 19
3.2 Architecture of V-band Quadrupler 20
3.3 Design of V-band Quadrupler 22
3.3.1 Transmission Line Model 22
3.3.2 Design of V-band Quadrupler 23
3.4 Simulation Results 60
3.4.1 Conversion Gain 61
3.4.2 Output Power 63
3.4.3 Harmonic Suppression 64
3.4.4 Layout 65
3.5 Measured Results 66
3.5.1 Conversion Gain 67
3.5.2 Output Power 68
3.5.3 Harmonic Suppression 69
3.6 Debug 70
3.6.1 Variation of Lump Elements 70
3.6.2 Bypass 75
3.7 Conclusion 81
Chapter 4 Design of K-band Tunable IQ Mixer with High Image Rejection Ratio 83
4.1 Introduction and Motivation 83
4.2 Architecture and Operation Principle of K-band Image Rejection IQ Mixer 84
4.2.1 Principle of Image Rejection 84
4.2.2 Architecture of K-band Tunable IQ Mixer 86
4.3 Design of K-band Tunable IQ Mixer 86
4.3.1 Overview of Phase Generator 86
4.3.2 Design of K-band Tunable IQ Mixer with High Image Rejection Ratio 93
4.4 Simulation Results 120
4.4.1 LO Power 121
4.4.2 Conversion Gain 122
4.4.3 Isolation 123
4.4.4 Image Rejection Ratio 124
4.4.5 Linearity 131
4.4.6 Layout 132
4.5 Measured Results 133
4.5.1 Branch line coupler 134
4.5.2 LO Power (down-converter) 137
4.5.3 Conversion Gain (down-converter) 138
4.5.4 Isolation (down-converter) 139
4.5.5 Image Rejection Ratio (down-converter) 141
4.5.6 LO Power (up-converter) 171
4.5.7 Conversion Gain (up-converter) 172
4.5.8 Isolation (up-converter) 173
4.5.9 Image Rejection Ratio (up-converter) 175
4.6 Conclusion 177
Chapter 5 Conclusion 179
REFERENCE 180
dc.language.isoen
dc.subject四倍頻器zh_TW
dc.subject混頻器zh_TW
dc.subject鏡像抑制zh_TW
dc.subjectIRRen
dc.subjectmixeren
dc.subjectquadrupleren
dc.titleV頻段四倍頻器與K頻段可調式高鏡像抑制正交混頻器
之研製
zh_TW
dc.titleResearch on V-band Quadrupler and K-band Tunable IQ Mixer with High Image Rejection Ratioen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王暉,張鴻埜,蔡政翰,蔡作敏
dc.subject.keyword鏡像抑制,混頻器,四倍頻器,zh_TW
dc.subject.keywordIRR,mixer,quadrupler,en
dc.relation.page184
dc.rights.note有償授權
dc.date.accepted2011-11-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
9.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved