請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡韶逸 | |
| dc.contributor.author | Yu-Jie Fu | en |
| dc.contributor.author | 傅昱絜 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:51:14Z | - |
| dc.date.available | 2017-01-17 | |
| dc.date.copyright | 2012-01-17 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-11-16 | |
| dc.identifier.citation | [1] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, 'Image quality assessment: From error visibility to structural similarity,' IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.
[2] N. Bruce and J. Tsotsos, 'Saliency based on information maximization,' Advances in neural information processing systems, vol. 18, pp. 155-162, 2006. [3] J. Harel, C. Koch, and P. Perona, 'Graph-based visual saliency,' Advances in neural information processing systems, vol. 19, pp. 545-552, 2007. [4] L. Itti, C. Koch, and E. Niebur, 'A model of saliency-based visual attention for rapid scene analysis,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254-1259, 1998. [5] L. Itti and C. Koch, 'Computational modeling of visual attention,' Nature reviews neuroscience, vol. 2, no. 3, pp. 194-203, 2001. [6] C. Koch and S. Ullman, 'Shifts in selective visual attention: towards the underlying neural circuitry.,' Human Neurobiology, vol. 4, no. 4, pp. 219-227, 1985. [7] O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau, 'A coherent computational approach to model bottom-up visual attention,' IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 802-817, 2006. [8] Z. Yu and H. Wong, 'A rule based technique for extraction of visual attention regions based on real-time clustering,' IEEE Transactions on Multimedia, vol. 9, no. 4, pp. 766-784, 2007. [9] A. Oliva, A. Torralba, M. Castelhano, and J. Henderson, 'Top-down control of visual attention in object detection,' in IEEE International Conference on Image Processing, vol. 1, pp. 253-256, 2003. [10] Y. Ma and H. Zhang, 'Contrast-based image attention analysis by using fuzzy growing,' in Proceedings of the eleventh ACM international conference on Multimedia, pp. 374-381, 2003. [11] T. Liu, J. Sun, N. Zheng, X. Tang, and H. Shum, 'Learning to detect a salient object,' in IEEE international Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2007. [12] W. Zhang, Q. Wu, G. Wang, and H. Yin, 'An adaptive computational model for salient object detection,' IEEE Transactions on Multimedia, vol. 12, no. 4, pp. 300-316, 2010. [13] R. Carmi and L. Itti, 'Visual causes versus correlates of attentional selection in dynamic scenes,' Vision Research, vol. 46, no. 26, pp. 4333-4345, 2006. [14] K. Seshadrinathan and A. Bovik, 'Motion tuned spatio-temporal quality assessment of natural videos,' IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 335-350, 2010. [15] Z. Wang, H. Sheikh, and A. Bovik, 'No-reference perceptual quality assessment of jpeg compressed images,' in IEEE International Conference on Image Processing., vol. 1, pp. 477-480, 2002. [16] D. Culibrk, M. Mirkovic, V. Zlokolica, M. Pokric, V. Crnojevic, and D. Kukolj, 'Salient motion features for video quality assessment,' IEEE Transactions on Image Processing, vol. 20, no. 4, pp. 948-958, 2011. [17] T. Kusuma, M. Caldera, and H. Zepernick, 'Utilising objective perceptual image quality metrics for implicit link adaptation,' in IEEE International Conference on Image Processing, vol. 4, pp. 2319-2322, 2004. [18] ITU-R Recommendation BT.500-11, 'Methodology for the subjective assessment of the quality of television pictures,' International Telecommunication Union, 2002. [19] M. Pinson and S. Wolf, 'Comparing subjective video quality testing methodologies,' in SPIE Video Communications and Image Processing Conference, Lugano, Switzerland, Citeseer, 2003. [20] S. Pei and C. Lai, 'Very low bit-rate coding algorithm for stereo video with spatiotemporal hvs model and binary correlation disparity estimator,' IEEE Journal on Selected Areas in Communications, vol. 16, no. 1, pp. 98-107, 1998. [21] R. Leung and D. Taubman, 'Perceptual optimization for scalable video compression based on visual masking principles,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 309-322, 2009. [22] J. Robson, 'Spatial and temporal contrast-sensitivity functions of the visual system,' JOSA, vol. 56, no. 8, pp. 1141-1142, 1966. [23] S. Daly, Engineering observations from spatiovelocity and spatiotemporal visual models. Kluwer Academic Publishers, 2001. [24] Y. Huang, T. Ou, P. Su, and H. Chen, 'Perceptual rate-distortion optimization using structural similarity index as quality metric,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 11, pp. 1614-1624, 2010. [25] T. Ou, Y. Huang, and H. Chen, 'Ssim-based perceptual rate control for video coding,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp. 682-691. [26] Z. Liu, H. Yan, L. Shen, Y. Wang, and Z. Zhang, 'A motion attention model based rate control algorithm for h. 264/avc,' in IEEE International Conference on Computer and Information Science, pp. 568-573, 2009. [27] C. Tang, C. Chen, Y. Yu, and C. Tsai, 'Visual sensitivity guided bit allocation for video coding,' IEEE Transactions on Multimedia, vol. 8, no. 1, pp. 11-18, 2006. [28] Y. Ma and H. Zhang, 'Contrast-based image attention analysis by using fuzzy growing,' in Proceedings of the eleventh ACM international conference on Multimedia, pp. 374-381, ACM, 2003. [29] Z. Li, F. Pan, K. Lim, G. Feng, X. Lin, and S. Rahardja, 'Adaptive basic unit layer rate control for jvt,' in JVT-G012-r1, 7th Meeting, Pattaya II, Thailand, 2003. [30] J. Devore and N. Farnum, Applied statistics for engineers and scientists. Duxbury Press, 1999. [31] K. Seshadrinathan, R. Soundararajan, A. Bovik, and L. Cormack, 'Study of subjective and objective quality assessment of video,' IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1427-1441, 2010. [32] K. Seshadrinathan, R. Soundararajan, A. Bovik, and L. Cormack, 'A subjective study to evaluate video quality assessment algorithms,' SPIE Proceedings Human Vision and Electronic Imaging, 2010. [33] A. Rohaly, J. Libert, P. Corriveau, A. Webster, et al., 'Final report from the video quality experts group on the validation of objective models of video quality assessment,' ITU-T Standards Contribution COM, pp. 9-80. [34] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Cohen, 'Gaze-based interaction for semi-automatic photo cropping,' in Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 771-780, ACM, 2006. [35] L. Chen, X. Xie, X. Fan, W. Ma, H. Zhang, and H. Zhou, 'A visual attention model for adapting images on small displays,' Multimedia systems, vol. 9, no. 4, pp. 353-364, 2003. [36] C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake, 'Autocollage,' in SIGGRAPH'06, pp. 847-852, 2006. [37] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, 'Attentional selection for object recognitionxa gentle way,' in Biologically Motivated Computer Vision, pp. 251-267, Springer, 2010. [38] V. Navalpakkam and L. Itti, 'An integrated model of top-down and bottom-up attention for optimizing detection speed,' in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2049-2056, 2006. [39] F. Porikli, 'Integral histogram: A fast way to extract histograms in cartesian spaces,' in IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 829-836, 2005. [40] T. Chen, Y. Chen, and S. Chien, 'Fast image segmentation and texture feature extraction for image retrieval,' in IEEE International Conference on Computer Vision Workshops, pp. 854-861, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66686 | - |
| dc.description.abstract | 隨著視訊壓縮標準的發展從MPEG1、MPEG2、H.263到H.264,視訊壓縮的效率不斷地進步。目前的視訊壓縮標準H.264/AVC可提供數十到數百壓縮比率,並且跟前一代相比壓縮效率提高了一大步。儘管如此,最後接收並觀看這些解壓縮回來的影片資訊還是我們人。視訊壓縮標準只用了像是差值絕對值和(sum of absolute difference, SAD)或是差值平方和(sum of squared difference, SSD)來當成壓縮視訊影像的品質指標,但這些品質指標卻無法和我們的人眼感知(human perception)有很好的關聯性。因此視訊壓縮的位元分配也就沒有對人眼感知做最佳化的處理。使用適當的位元分配,例如在畫面中重要的區域或是失真較多的區域分配到更多的位元率,可以讓整體的視覺品質提升。
在本篇論文中,我們發展了一套人眼感知可調節品質之H.264視訊編碼器系統。分析重建區塊(macroblock, MB)以及從模式選擇來的最佳預測區塊的關係,我們提出了預測式的量化參數(quantization parameter, QP)評估方法用來調節視訊品質根據一個事先定義好的感知品質。我們也提出了一自動的品質調整機制來達到更好的位元預算的使用。除此之外,有了顯著物件偵測(salient object detection)的幫助,我們可以進一步地提升人眼會注意的區域的視覺品質。 我們提出的演算法藉由改變每個區塊的量化參數來達到視訊編碼系統中更好的位元分配。與H.264視訊編碼系統的參考軟體(Reference Software) JM14.0相比較,我們可以達到比較好且穩定的視訊品質。 針對硬體實作,我們提出了顯著物件偵測引擎(salient object detection engine)可應用於多種用途。我們的顯著物件偵測引擎除了可以應用在視訊壓縮以外,也能應用在物件辨識、物件切割等等的應用上。我們的設計使用了TSMC90nm的技術製程,處理能力的視訊解析度為HDTV1080p(1920×1080)。 | zh_TW |
| dc.description.abstract | With the development of video coding standard from MPEG-1, MPEG-2, H.263 to H.264/AVC, the coding efficiency improves step by step. The video coding standard, H.264/AVC, offers tens of to hundreds of compression ratio and has improved the coding efficiency a lot better than before. However, the final receiver of the video information is human. The video coding standard only uses SAD (sum of absolute difference) or SSD (sum of square difference) as the quality metrics which are poorly correlated with human perception. Thus the bit allocation of the video bit stream is usually not utilized efficiently for the human perception. With the proper allocation of bits, such as more bits for more important or more distorted region, the total quality can be improved.
In this work, we develop a system of perceptual quality-regulable H.264 video encoder. Exploiting the relationship between the reconstructed macroblock and its best predicted macroblock from mode decision, a novel predictive quantization parameter estimation method is built and used to regulate the video quality according to a predefined perceptual quality. An automatic scheme of quality refinement is also developed to a better usage of bit budget. Moreover, with the aid of salient object detection, we further improve the quality on where human might focus on. The proposed algorithm achieves better bit allocation for video coding system by changing quantization parameters at macroblock level. Compared to JM reference software with macroblock layer rate control, our algorithm achieves better and more stable quality by the higher average SSIM index and smaller SSIM variation. For hardware implementation, We propose a salient object detection hardware engine since the salient object detection can be used not only in video coding but also in many other applications such as automatic image cropping, adaptive image display in small devices, object recognition, and tracking. The design is implemented with TSMC90nm technology. The processing capability is HDTV1080p(1920x1080) with 30 frame per second. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:51:14Z (GMT). No. of bitstreams: 1 ntu-100-R98943015-1.pdf: 3095280 bytes, checksum: 025c237d0b8623b6c6d7c9cde8745c50 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Abstract ix
Chapter 1 Introduction 1 1.1 The Compression in Video Coding Standard . . . . . 1 1.2 Visual Attention . . . . . . . . . . . . . . . . . 2 1.3 Video Quality Assessment . . . . . . . . . . . . . 3 1.4 Thesis Organization . . . . . . . . . . . . . . . . 5 Chapter 2 Background Knowledge and Motivation 7 2.1 Efficient Coders with Visual Consideration . . . . 7 2.2 Salient Object Detection . . . . . . . . . . . . . 8 2.2.1 Multi-Scale Contrast . . . . . . . . . . . . . . 8 2.2.2 Center-Surround Histogram . . . . . . . . . . . 8 2.2.3 Color Spatial-Distribution . . . . . . . . . . . 9 2.3 Structural Similarity Index . . . . . . . . . . . . 11 2.4 Motivation . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Proposed Perceptual Model 13 3.1 Overview of the Proposed Algorithm . . . . . . . . 14 3.2 The SSIM Computation of Best Prediction MB . . . . 15 3.3 QP Estimation . . . . . . . . . . . . . . . . . . . 16 3.3.1 The SSIM Prediction of Reconstructed MB . . . . . 16 3.3.2 DMOS Score Mapping . . . . . . . . . . . . . . . 21 3.4 Quality Threshold Refinement . . . . . . . . . . . 21 3.5 Salient Object Detection . . . . . . . . . . . . . 23 Chapter 4 Experimental Results of the Proposed Model 25 4.1 Experimental Settings . . . . . . . . . . . . . . . 25 4.2 R-SSIM performance . . . . . . . . . . . . . . . . 26 4.3 SSIM curve along frame index . . . . . . . . . . . 26 4.4 Subjective quality . . . . . . . . . . . . . . . . 33 Chapter 5 Hardware Implementation of Salient Object Detection Engine 43 5.1 Hardware Analysis . . . . . . . . . . . . . . . . . 44 5.1.1 Multi-Scale Contrast . . . . . . . . . . . . . . 45 5.1.2 Center-Surround Histogram . . . . . . . . . . . . 45 5.1.3 Color Spatial-Distribution . . . . . . . . . . . 46 5.2 Hardware Architecture Design . . . . . . . . . . . 48 5.2.1 Gaussian Filter . . . . . . . . . . . . . . . . . 50 5.2.2 Contrast and Distance Calculator . . . . . . . . 50 5.2.3 IH Integration and Extraction . . . . . . . . . . 51 5.3 Implementation Results . . . . . . . . . . . . . . 51 Chapter 6 Conclusion 55 Bibliography 57 | |
| dc.language.iso | en | |
| dc.subject | h.264視訊編碼器 | zh_TW |
| dc.subject | 人眼感知編碼 | zh_TW |
| dc.subject | 品質可調節的 | zh_TW |
| dc.subject | perceptual coding | en |
| dc.subject | h.264 video encoder | en |
| dc.subject | quality regulable | en |
| dc.title | 人眼感知可調節品質之H.264視訊編碼器系統設計 | zh_TW |
| dc.title | System Design of Perceptual Quality-Regulable H.264 Video Encoder | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳宏銘,陳彥光,林嘉文,彭文孝 | |
| dc.subject.keyword | 人眼感知編碼,h.264視訊編碼器,品質可調節的, | zh_TW |
| dc.subject.keyword | perceptual coding,h.264 video encoder,quality regulable, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-11-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
