請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66679
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林晃巖(Hoang-Yan Lin) | |
dc.contributor.author | Chao-Te Lee | en |
dc.contributor.author | 李昭德 | zh_TW |
dc.date.accessioned | 2021-06-17T00:50:46Z | - |
dc.date.available | 2015-01-16 | |
dc.date.copyright | 2012-01-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2011-11-17 | |
dc.identifier.citation | 1. D. Suzuki, T. Fukami, E. Higano, N. Kubota, T. Higano, S. Kawaguchi, Y. Nishimoto, K. Nishiyama, K. Nakao, T. Tsukamoto, H. Kato, “Crosstalk-Free 3D Display with Time-Sequential OCB LCD,” SID’09 DIGEST, pp.428-431, (2009).
2. C. H. Tsai, K. C. Huang; K. J. Lee and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40, 2577-2581 (2001). 3. C. T. Lee, C. H. Tsai, and H. Y. Lin, “The Improvement of In-cell Microretarder for Stereoscopic LCD Fabrication,” Soc. Inf. Display Tech. Digest 39, 448-451 (2008). 4. H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin and I. J. Chung, 'A Novel Polarizer Glasses-type 3D Displays with a Patterned Retarder,' Soc. Inf. Display Tech. Digest 41, 1 (2010). 5. Y. Yoshihara, H. Ujike, and T. Tanabe, '3D Crosstalk of Stereoscopic (3D) Display using Patterned Retarder and Corresponding Glasses,' Proc. Int. Display Workshops, 3Dp-5 (2008). 6. Hirotsugu Yamamoto, Tomoya Kimura, Shinya Matsumoto, and Shiro Suyama , “Viewing-Zone Control of Light-Emitting Diode Panel for Stereoscopic Display and Multiple Viewing Distances,” Displays, Vol. 6, p. 359 (2010). 7. Q. H. Wang, Y. H. Tao, W. X. Zhao and D. H. Li, “Lenticular lens based 3D autostereoscopic liquid crystal display,” Proc. of IDRC, Orlando, pp.306-308, (2008). 8. 'Real Time Stereoscopic Streaming.' http://gruaz.net/?page_id=116&page=4. 9. M. Krijn, S. de Zwart, D. de Boer, O. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Display (2008). 10. Huang, Y.-C., C.-W. Chen, and Y.-P. Huang,“Low Crosstalk Autostereoscopic 3D display with Multi-Electrode Driving Liquid Crystal Lens”. Optics and Photonics in Taiwan (2009). 11. P. Yeh and C. Gu, Optics of liquid crystal displays (Wiley, New York, 1999). 12. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, (Wiley, New York, 2006). 13. Y. C. Yang, and D. K. Yang, “Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays,” J. Opt. A: Pure Appl. Opt. 11, 105502 (2009). 14. C. T. Lee, H. Y. Lin, and C. H. Tsai, 'Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,' Optics Express 18, 27079-27094 (2010). 15. T. H. Yoon, G. D. Lee, and J. C. Kim, 'Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,' Optics Letters 25, 1547-1549 (2000). 16. C. H. Lin, 'Optically compensated circular polarizers for liquid crystal displays,' Opt. Express 16, 13276-13286 (2008). 17. Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers, 22, 739-742 (1991). 18. Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13, 10777-10783 (2005). 19. C. H. Tsai, K. C. Huang; K. J. Lee and W. J. Hsueh, “Fabricating microretarders by CO2 laser heating process technology,” Opt. Eng. 40, 2577-2581 (2001). 20. Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu and W. M. Huang, “Stereoscopic 3D Display using Patterned Retarder,” Soc. Inf. Display Tech. Digest 39, 260-263 (2008). 21. Y. Yoshihara, H. Ujike, and T. Tanabe, '3D Crosstalk of Stereoscopic (3D) Display using Patterned Retarder and Corresponding Glasses,' Proc. Int. Display Workshops, 3Dp-5 (2008). 22. S. J. Roosendaal, B. M. I. van der Zande, A. C. Nieuwkerk, C. A. Renders, J. T. M. Osenga, C. Doornkamp, E. Peeters, J. Bruinink, J. A. M. M. van Haaren and S. Takahashi, “Novel High Performance Transflective LCD with a Patterned Retarder,” Soc. Inf. Display Tech. Digest 34, 78-81 (2003). 23. C. Doornkamp, B. M. I. van der Zande, S. J. Roosendaal, L. W. G. Stonfmeel, J. J. van Glabbeek, J. T. M. Osenga, J. A. M. Steenbakkers, “Next Generation Mobile LCDs with In-cell Retarders,” J. Soc. Inf. Display 12, 233-239 (2004). 24. J. Harrold, A. Jacobs, G. Woodgate, and D. Ezra, '3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update,' Sharp Technical Journal, 24-30 (1999). 25. J. H. Oh, W. H. Park, B. S. Oh, D. H. Kang, H. J Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, K. H. Lee and K. H. Park, “Stereoscopic TFT-LCD with Wire Grid Polarizer and Retarder,” Soc. Inf. Display Tech. Digest 39, 444-447 (2008). 26. C. T. Lee, C. H. Tsai, W. C. Liu, and H. Y. Lin, “Fabrication of In-cell Microretarder & In-cell Polarizer for Stereoscopic LCD by Solution Process,” Proc. Int. Display Manufacturing Conference, p2-16 (2009). 27. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13, 8318-8331 (2005). 28. T. Ishinabe, T. Miyashita, T. Uchida, “Wide-viewing-angle polarizer with a large wavelength range,” Jpn. J. Appl. Phys. 41, 4553-4558 (2002). 29. K. C. Huang, K. Lee and H. Y. Lin, “Crosstalk issue in stereo/autostereoscopic display,” Proc. Int. Display Manufacturing Conference, p2-18 (2009). 30. E. J. Acosta, E. J. Beynon, A. M. S. Jacobs, M. G. Robinson, K. A. Saynor, M. D. Tillin, M. J. Towler, and H. G. Walton, “Broadband optical retardation device,” US Patent 6735017 (2004). 31. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Ind. Acad. Sci. A 41, 130-144 (1956). 32. Y. Tamura, M. Oyamada, A. Yoshida, H. Aiba, and K. Ohtawara, 'Full HD 3D Display using Stripe patterned Quarter wave Retarder Array and Retardation switch ing Glasses,' Soc. Inf. Display Tech. Digest 41, 874-877 (2010). 33. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679-1684 (1979). 34. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351-353 (1997). 35. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451-1462 (1996). 36. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996). 37. M. G.H. Hiddink, S.T. de Zwart, O.H. Willemsen and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37, 1142-1145 (2006). 38. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992-994 (1998). 39. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater., 21, 643–646 (2002). 40. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515-1517 (2003). 41. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608-1610 (2004). 42. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151-156 (2005). 43. H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328-11335 (2007). 44. Y. P. Huang, C. W. Chen, and T. C. Shen, 'High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40, 336-339 (2009). 45. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, 'A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,' Opt. Express 18, 18506-18518 (2010). 46. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, 'Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,' Optics Express 19, 17402-17407 (2011). 47. H. Kikuchi, Structure and Bonding, Springer-Verlag, Berlin Heidelberg, Vol. 128, 99-117(2008). 48. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nature Materials, Vol. 1, 64(2002). 49. H. Kikuchi, Information Display, 2009(11), pp.8-13(2009). 50. H. Kikuchi, M. Yokota, Y. Hiskado, H. Yang, T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64-68 (2002). 51. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311 (2005). 52. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009). 53. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009). 54. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 7, 49-51 (2010). 55. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010). 56. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010). 57. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011). 58. D. Mardare and G. Rusu, 'Comparison of the dielectric properties for doped and undoped TiO2 thin films,' J. Optoelectronics and Advanced Materials 6, 333-336 (2004). 59. Y. Li and S. T. Wu, 'Polarization independent adaptive microlens with a blue-phase liquid crystal,' Opt. Express 19, 8045-8050 (2011). 60. L. Li, L. Shi, D. Bryant, P. J. Bos, T. Van Heugten, and D. Duston, '3.3: Design and Modeling of a Refractive Liquid Crystal Lens for Tunable Optical Correction in 3 D Stereoscopic Displays,' Soc. Inf. Display Tech. Digest (2011). 61. Y. Liu, S. Xu, L. Rao, S. T. Wu, and H. Ren, 'Adaptive Liquid Crystal Lens for Integral Image 3D Display.' Soc. Inf. Display Tech. Digest (2011). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66679 | - |
dc.description.abstract | 本篇論文利用液晶光學元件應用於偏振眼鏡式與裸眼式3D立體顯示技術,以解決3D顯示器的漏光與左右眼相互干擾現象。
一般常見的液晶光學元件,可用於1.偏振光相位延遲與 2.折射率漸變而改變光的行進路徑。前者目的在於使單一偏振光改變其偏振型態,例如線偏振改圓偏振,或是偏振角度改變;後者在於使單一偏振方向的光,穿過折射率漸變的液晶元件,改變其行進路徑,進而形成發散或聚焦。以上兩種基本特性,我們在本篇論文應用在3D立體顯示器上,並討論其結果。 在偏振眼鏡式立體顯示技術方面,我們利用可固化式液晶做為圖形化相位延遲片與偏光片(patterned retarder and polarizer),並將其製作於面板內部(in-cell),使其達到無垂直視角限制之3D顯示系統。然而本質上,相位延遲片在不同入射角與不同入射波長的光會產生不同的相位延遲效果,因此我們利用雙軸式波片(biaxial waveplate)來達成寬頻與廣視角的圖形化偏光片。並且討論可能的設計情況適用於不同的液晶配向製程,包括單一配向層使用兩次曝光;和圖形化配向層(patterned alignment)。此研究目的在於提供無視角限制之大尺寸家庭劇院3D顯示器。 在裸眼式立體顯示器方面,我們利用藍相液晶(blue-phase liquid crystal)設計出可調式透鏡使用在產生非偏振光的顯示器,例如有機發光顯示器(OLED)。由於有機發光顯示器的色彩、亮度與低耗電性在小尺寸面板上有極佳的特性,但其產生非偏振光,因此需要非偏振光的可調性透鏡達成2D/3D切換功能。我們利用高介電係數之平坦層與多電極設計且最佳化透鏡相位圖案。此研究目的在於提供非偏振光之中小尺寸手持式3D顯示器。 | zh_TW |
dc.description.abstract | This dissertation presents stereoscopic and autostereoscopic techniques based on liquid crystal (LC) devices, and the methods to achieve 3D effect and reduce crosstalk.
Basically, LC optical devices can be used as: 1. phase retardation device for a polarized light; and 2. gradient refractive index device to change the light propagation directions. The former is to change the polarization state of a polarized light. For example, the linear polarized state is changed to circular polarized state or vise versa. The later is used to change the optical path difference of a polarized light beam when passing through a LC device with gradient refractive index medium. So the light beam will become focused or divergent. We will discuss these two effects and apply them for 3D displays. For stereoscopic displays using polarized glasses, we use polymerized LCs to fabricate in-cell patterned retarder and in-cell polarizer to achieve a very wide vertical viewing angle. However, the retardation plate has different phase differences throughout the entire wavelength range of visible light and different incident angles. Hence we use biaxial waveplates to accomplish broadband and wide-view patterned polarizers. Two kinds of fabrication processes for the patterned polarizers are considered: one is double exposure method for uniform alignment layer; the other is patterned alignment method. The final goal of this research is to offer unlimited viewing freedom for large-size or home theater 2D/3D LCDs. For autostereoscopic displays, we employ blue-phase liquid crystal to design an adaptive focusing lens for unpolarized light based displays (ex: OLED). Due to OLED’s high performances of color, brightness and low power consumption, it has great potential for mobile displays. However it requires polarizer-free adaptive lens to generate 2D/3D switch ability. We use multi-electrode structure and high dielectric constant material to optimize the lens phase profile. The purpose of this research is to provide 2D/3D switchable lens for displays with unpolarized light source. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:50:46Z (GMT). No. of bitstreams: 1 ntu-101-D96941007-1.pdf: 4644169 bytes, checksum: 6160ccdc111a68d65048f0c8634dc427 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 iii
摘要 iv ABSTRACT v TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1-1 Background 1 1-2 Stereoscopic 3D displays 3 1-3 Autostereoscopic 3D displays 7 1-3-1 Viewing zone and distance issues 8 1-3-2 2D/3D switchable and tunable optical devices 12 1-4 Dissertation organization 15 Chapter 2 Theory of polarization optics 16 2-1 Jones matrix representations 16 2-1-1 Normal incidence of Jones matrix 16 2-1-2 Extended Jones matrix for off-axis light 19 2-2 Muller matrix and Stokes vector 22 2-2-1 Connection between Muller and Jones matrices 22 2-2-2 Stokes vector and Poincare sphere [12] 24 2-3 Off-axis behavior of biaxial materials 28 2-3-1 Coordinate system for off-axis light 29 2-3-2 Transmission axis of absorptive polarizer 30 2-3-3 Optical phase retardation of biaxial plate for oblique incidence 31 2-4 Literature review of achromatic waveplates 34 2-4-1 Broadband behavior at normal incidence 34 2-4-2 Wide-view performance at oblique incidence 37 2-4-3 Example of broadband and wide-view circular polarizer with Genetic Algorithm 39 Chapter 3 In-cell patterned polarizer for stereoscopic 3D LCDs 43 3-1 Background and crosstalk phenomenon 43 3-2 Fabricating process 47 3-2-1 In-cell retarder and absorptive polarizer 47 3-2-2 Combination of in-cell structure 48 3-3 Wide-view patterned polarizers aligned by rubbing 51 3-3-1 Conventional wide-view patterned circular polarizers 52 3-3-2 Broadband and wide-view patterned circular polarizers (type A, three layers) 57 3-3-3 Broadband wide-view patterned circular polarizers (type B, four layers) 61 3-3-4 Comparison of “normal view” of 3D display 67 3-3-5 Discussion 68 3-4 Wide-view patterned polarizers by patterned alignment technique with GA optimization 69 3-4-1 Conventional patterned QWP with a positive C plate 71 3-4-2 Wide-view patterned polarizer with a biaxial A plate 75 3-4-3 Further crosstalk reduction by optimizing the corresponding polarizers on glasses 78 3-4-4 Comparison of “normal view” of 3D display 81 3-4-5 Discussion 82 Chapter 4 LC lens for autostereoscopic display 84 4-1 Introduction to blue-phase LC material 84 4-2 Autosterescopic displays based on GRIN LC lens 85 4-3 Blue-phase LC lens for non-polarized light displays 88 4-3-1 Hole-patterned BPLC lens 88 4-3-2 BPLC lens based on multi-electrode structure 89 4-3-3 Simulation results 91 4-4 Comparison and discussion 96 Chapter 5 Conclusion and future work 98 5-1 Conclusion 98 5-2 Future work 99 References 101 | |
dc.language.iso | en | |
dc.title | 液晶光學元件應用於立體顯示器之研究 | zh_TW |
dc.title | Liquid crystal (LC)-based optical devices for 3D displays | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李君浩,黃鼎偉,陳振寰,蔡朝旭 | |
dc.subject.keyword | 相位延遲片,偏振眼鏡式3D立體顯示器,裸眼式3D立體顯示器,2D/3D切換,交互干擾,藍相液晶,可調式透鏡, | zh_TW |
dc.subject.keyword | waveplate,polarized glasses type 3D stereoscopic display,autostereoscopic display,2D/3D switchability,crosstalk,blue-phase liquid crystal,adaptive lens, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-11-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。