請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管傑雄 | |
dc.contributor.author | Hung-Ming Chen | en |
dc.contributor.author | 陳宏銘 | zh_TW |
dc.date.accessioned | 2021-06-17T00:50:38Z | - |
dc.date.available | 2013-01-16 | |
dc.date.copyright | 2012-01-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2011-11-18 | |
dc.identifier.citation | [1] L. Vescan, O. Chretien, T. Stoica, E. Mateeva, A. Mück, Materials Science in Semiconductor Processing 3, 383 2000
[2] M. Stoffel, U. Denker, and O. G. Schmidt, Appl. Phys. Lett. 82, 3236 2003 [3] Arnold Alguno, Noritaka Usami, Toru Ujihara, Kozo Fujiwara, Gen Sazaki, and Kazuo Nakajima, Appl. Phys. Lett.83, 1258 2003 [4] M. H. Liao, C.-Y. Yu, T.-H. Guo, C.-H. Lin, and C. W. Liu, IEEE ELECTRON DEVICE LETTERS 27, 252 2006 [5] Yakimov A I, Dvurechenskii A V, Nikiforov A I and Proskuryakov Yu Yu 2001 Interlevel Ge/Si quantum dot infrared photodetector J. Appl. Phys. 89 5676 [6] Tong S, Liu F, Khitun A, Wang K L and Liu J L 2004 Tunable normal incidence Ge quantum dot midinfrared detectors J. Appl. Phys. 96 773 [7] Elkurdi M, Boucaud P, Sauvage S, Kermarrec O, Campidelli Y, Bensahel D, Saint-Girons G and Sagnes I 2002 Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots Appl. Phys. Lett. 80 509 [8] S. Tong, J. L. Liu, J. Wan, and Kang L. Wang, Appl. Phys. Lett.80, 1189, 2002 [9] Singha R K, Manna S, Das S, Dhar A and Ray S K 2010 Room temperature infrared photoresponse of self assembled Ge/Si (001) quantum dots grown by molecular beam epitaxy Appl. Phys. Lett. 96 233113 [10] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943, 1990 [11] http://www2.warwick.ac.uk [12] Brian Cunningham, Jack O. Chu, and Shah Akbar, Appl. Phys. Lett. 59,3574 1991 [13] G Abstreiter, P Schittenhelm, C Engel, E Silveira, A Zrenner, D Meertens and W Jager, Semicond. Sci. Technol. 11 1521 1996 [14] T. I. Kamins, E. C. Carr, R. S. Williams, and S. J. Rosner, J. Appl. Phys. 81, 211 1997 [15] Vinh Le Thanh, P. Boucaud, and D. De´barre, Phys. Rev. B 58, 13115 1998 [16] F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80, 984 1998 [17] Gilberto Medeiros-Ribeiro, Alexander M. Bratkovski, Theodore I. Kamins, Douglas A. A. Ohlberg, R. Stanley Williams, SCIENCE 279, 353 1998 [18] Zhenyang Zhong, A. Halilovic, M. Muhlberger, F. Scha¨ffler, and G. Bauer, J. Appl. Phys.93, 6258 2003 [19] Chen Y R, Kuan C H, Suen Y W, Peng Y H, Chen P S, Chao C H, Liang E Z, Lin C F and Lo H C 2008 High-density one-dimensional well-aligned germanium quantum dots on a nanoridge array Appl. Phys. Lett. 93 083101 [20] Zhong Z and Bauer G 2004 Site-controlled and size-homogeneous Ge islands on prepatterned Si(001) substrates Appl. Phys. Lett. 84 1922 [21] Stoica T, Shushunova V, Dais C, Solak H and Grützmacher D 2007 Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates Nanotechnology 18 455307 [22] Lichtenberger H, Mühlberger M and Schäffler F 2003 Transient-enhanced Si diffusion on native-oxide-covered Si(001) nanostructures during vacuum annealing Appl. Phys. Lett. 82 3650 [23] Lichtenberger H, Mühlberger M, Schelling C, Schwinger W, Senz S and Schäffler F 2004 Transient-enhanced Si diffusion on native-oxide-covered Si(001) nanostructures during vacuum annealing Physica E 23 442 [24] Yang B, Liu F and Lagally M G 2004 Local Strain-Mediated Chemical Potential Control of Quantum Dot Self-Organization in Heteroepitaxy Phys. Rev. Lett. 92 025502 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66677 | - |
dc.description.abstract | 鍺量子點由於可應用於製作光偵測器,且在製程上能與矽基技術相容,因此其磊晶成核特性已被廣泛地研究。一般成長於平面矽基板上的鍺量子點,其成核位置呈現無規則的排列,且尺寸均勻度不易控制,因而限制其實際應用的可能性。本論文將詳述如何透過凹洞圖形化之矽基板來控制鍺量子點的成核特性;研究中發現經由調整矽基板上凹洞結構的直徑、間距以及深度,可使得成長於基板上的鍺量子點受到控制,因而呈現二維規則性排列,並具有極佳的尺寸均勻度。這些受到凹洞結構所控制的量子點,在空間上以<110>方向為對稱軸呈現對稱排列,形貌呈現橢圓頂狀,且其長軸平行於<100>方向。量子點的密度為4×109 /cm2,長軸、短軸以及高度尺寸分別為84 ± 7 nm、73 ± 6 nm及4 ± 1 nm。
此外,本研究發現原目的為使矽基板表面之原生氧化層產生熱脫附,以提高鍺量子點磊晶品質的磊晶前熱處理製程,將導致所製作之凹洞結構的表面形貌轉變為截頭倒金字塔型,而如此形貌之結構將影響後續所成長量子點之成核特性甚鉅。經由計算截頭倒金字塔型凹洞結構之表面化學勢,我們發現鍺量子點之成核特性的確是由這些截頭倒金字塔型凹洞結構之表面形貌所控制。本論文之研究結果有助於了解鍺量子點於凹洞圖形化矽基板上之成長特性與機制,所獲得之高密度且尺寸均勻之鍺量子點更可整合於鍺量子點光偵測器元件中,以提升元件效能。 | zh_TW |
dc.description.abstract | The nucleation properties of Ge dots have been extensively researched because of its potential for photodetectors and compatibility with Si technology. In general, Ge dots grown on a blank Si substrate are randomly positioned and exhibit a broad size distribution, which limits its realistic applications. In this dissertation, we demonstrated that the nucleation properties of Ge dots can be controlled with pit-patterned Si substrate. These well-controlled Ge dots are symmetrically located with respect to <110> and exhibit an elliptical dome shape whose major axis is oriented along <100>. The dot areal density is up to 4×109 /cm2, and the means of major axis, minor axis, and height of the dots are 84 ± 7 nm, 73 ± 6 nm, and 4 ± 1 nm, respectively.
Besides, we found that the pre-growth heat treatment process, a conventional process for native oxide desorption before growth, will drastically transforms the structure of the pre-patterned pits on Si(001) substrates into truncated inverted pyramids (TIPs) and crucially determines the nucleation position, shape, and spatial orientation of the subsequently grown Ge dots. The surface chemical potential of the TIP was also calculated and compared with the observed nucleation properties of Ge dots. These results raise the possibility of realizing high-performance Ge quantum dot photodetectors and provide further understanding of the growth of Ge dots on pit-patterned Si substrates. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:50:38Z (GMT). No. of bitstreams: 1 ntu-101-D95943029-1.pdf: 7709345 bytes, checksum: d1b9c4506aa30f7a0837179d00edef1e (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………….…..… i
誌謝……………………………………………………………….…. ii 中文摘要……………………………………………………….....…. iii 英文摘要…………………………………………………………….. iv 目錄…………………………………………………………………. v 圖目錄……………………………………………………………… vii 表目錄………………………………………………………………. x 第一章 鍺量子點之成長特性及其應用…………………………… 1 1.1 緒論……………………………………………………. 1 1.2 鍺量子點光偵測器…………………………..……… 2 1.3 異質磊晶系統簡介……………………………………. 3 1.4 鍺量子點於平面矽(001)基板上之成核特性………… 6 1.5 於圖形化矽基板上成長鍺量子點………………..…… 12 1.6 研究目標………………………………………………… 15 第二章 於凹洞圖形化矽基板上成長鍺量子點之實驗設計……….. 16 2.1 實驗製程流程………………………………………… 16 2.2 二維凹洞結構之檢視…………………..……………… 21 2.3 鍺量子點成長溫度之選擇…………..…………… 22 第三章 凹洞結構之尺寸特徵對鍺量子點成長之影響…………… 24 3.1 凹洞直徑對鍺量子點成長的影響…………….…… 24 3.2 凹洞間距對鍺量子點成長的影響……………..…… 26 3.3 凹洞深度對鍺量子點成長的影響……………..…… 28 3.4 二維凹洞結構尺寸特徵之最佳化………………..… 30 3.5 矽緩衝層對凹洞外鍺量子點成長的影響………..… 31 第四章 熱處理所誘發之基板表面形貌轉變及其對鍺量子點成核特性的影響……………………………………………………………… 33 4.1 成長於凹洞結構內鍺量子點的成核特性……..…… 33 4.2 熱處理所誘發之基板表面形貌轉……………..…… 35 4.3 不同溫度與時間之磊晶前熱處理…………………… 40 4.4 TIP形貌凹洞結構之表面化學勢….…………..…… 41 第五章 結論……………………………………………………… 43 參考文獻……………………………………………..…………… 44 | |
dc.language.iso | zh-TW | |
dc.title | 鍺量子點於凹洞圖形化矽(001)基板上之成核特性與機制 | zh_TW |
dc.title | Nucleation properties and mechanism of Ge dots grown on pit-patterned Si(001) substrate | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 孫允武,蘇炎坤,楊富量,孫建文,林浩雄 | |
dc.subject.keyword | 鍺量子點,凹洞圖形化矽基板,磊晶前熱處理,截頭倒金字塔型,表面化學勢, | zh_TW |
dc.subject.keyword | Ge dots,pit-patterned Si substrate,pre-growth heat treatment,truncatedinverted pyramid,surface chemical potential, | en |
dc.relation.page | 46 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-11-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。