請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66670完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Ting-Yu Huang | en |
| dc.contributor.author | 黃婷玉 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:50:12Z | - |
| dc.date.available | 2017-04-24 | |
| dc.date.copyright | 2012-04-24 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-11-25 | |
| dc.identifier.citation | Acharya, B.R., and Assmann, S.M. (2009) Hormone interactions in stomatal function. Plant Mol. Biol 69, 451-462.
Adham, A.R., Zolman, B.K., Millius, A., and Bartel, B. (2005) Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in β-oxidation. Plant J. 41, 859–874. Alvarez, M. E., Pennell, R. I., Meijer, P.-J., Ishikawa, A., Dixon, R. A., and Lamb,C. (1998) Reactive oxygen intermediates mediate a systemic signalnetwork in the establishment of plant immunity. Cell 92, 773-784. André, S., Siebert, H.C., Nishiguchi, M., Tazaki, K., and Gabius, H.J. (2005).Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms. Biochim. Biophys. Acta. 1725, 222-232. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L.,Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. Baker, A., and Graham, I. (2002) Plant Peroxisomes. Biochemistry, Cell Biology and Biotechnological Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands. Barre, A., Hervé, C., Lescure, B. and Rougé, P. (2002) Lectin receptor kinases in plants. Crit. Rev. Plant Sci. 21, 379-399. Barroso, J.B., Corpas, F.J., Carreras, A., Sandalio, L.M., Valderrama, R., Palma, J.M., Lupianez, J.A., and del, Rio. L.A. (1999) Localization of nitric-oxide synthase in plant peroxisomes. J.Biol. Chem. 274, 36729–36733. Bartel, B., LeClere, S., Magidin, M., and Zolman, B.K. (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J. Plant Growth Regul. 20,198–216. Bender, C., Rangaswamy, V., and Loper, J. (1999) Polyketide production by plant associated pseudomonads. Annu Rev Phytopathol 37, 175–196 Bestwick, C.S., Bennett, M.H., and Mansfield, J.W., (1995) Hrp mutant of Pseudomonas syringae pv. phaseolicola induces cell wall alterations but notmembrane damage leading to the hypersensitive reaction in lettuce. Plant Physiol. 108, 503–516 Beevers, H. (1979) Microbodies in higher plants. Annu. Rev. Plant Physiol. 30, 159–19 Brooks, D.M., Bender, C.L., and Kunkel, B.N. (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic aciddependent defenses in Arabidopsis thaliana. Mol. Plant Pathol. 6, 629–639 Brown, I., Trethowan, J., Kerry, M., Mansfield, J., and Bolwell, G.P. (1998) Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells. Plant J. 15, 333–343 Boller, T. and Felix, G. (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379-406. Bouwmeester, K., and Govers, F. (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J. Exp. Bot. 60, 4383-96. Bouwmeester, K., de Sain, M., Weide, R., Gouget, A., Klamer, S., Canut, H., and Govers, F. (2011) The lectin receptor kinase LecRK-I.9 is a novel phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 3, e1001327. Bright, J., Desikan, R., Hancock, J.T., Weir, I.S. and Neill, S.J. (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45, 113–122. Buchanan BB, Gruissem W, Jones RL. (2000) Biochemistry and molecular biology of plants. Rockville (MD): American Society of Plant Physiol. 1367 Chen, S. Y., Kuo, S. R., and Chien, C. T. (2008) Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol. 28,1431-1439. Chen, Z., Agnew, J.L., Cohen, J.D., He, P., Shan, L., Sheen, J., and Kunkel, B.N. (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl. Acad. Sci. USA 104, 20131–20136 Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S., and Zhu, L. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46, 794-804. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. Cook, D.N., Pisetsky, D.S., and Schwartz, D.A. (2004). Toll-like receptors in the pathogenesis of human disease. Nat. Immunol. 5, 975-979. Davies, P.J. (1995). Plant hormones. Dordrecht: Kluwer Academic Publishers. Desikan, R., Horák, J., Chaban, C., Mira-Rodado, V., Witthöft, J., Elgass, K., Grefen, C., Cheung, M.K., Meixner, A.J., Hooley, R., Neill, S.J., Hancock, J.T., and Harter, K. (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One. 3(6), e2491. Eubel, H., Meyer, E.H., Taylor, N.L., Bussell, J.D., O'Toole, N., Heazlewood, J.L., Castleden, I., Small, I., Smith, S.M., and Millar, A.H. (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol. 148, 1809–1829 del, Rio. L.A., Pastori, G.M., Palma, J.M., Sandalio, L.M., Sevilla, F., Corpas, F.J., Jimenez, A., Lopez, Huertas. E., and Hernandez, J. (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol. 116, 1195–1200. del, Río. L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M., Gómez, M., and Barroso, J.B. (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53, 1255–1272. Eulgem, T., and Somssich, I.E. (2007) Networks of WRKY transcription factors idefense signaling. Curr. Opin. Plant Biol.10, 366–371 Fantl, W. J., Johnson, D. E., and Williams, L. T. (1993). Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62, 453-481. Fan, L.M., Zhao, Z., and Assmann, S.M. (2004) Guard cells: a dynamic signaling model. Curr. Opin Plant Biol. 7, 537–546. Foyer, C.H., and Noctor, G. (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant 119, 355–364. Ghisla, S., and Thorpe, C. (2004) Acyl-CoA dehydrogenases: a mechanistic overview. Eur. J. Biochem. 271, 494–508 Girardin, S.E., Sansonetti, P.J., and Philpott, D.J. (2002). Intracellular vs extracellular recognition of pathogens-common concepts in mammals and flies. Trends Microbiol. 10, 193-199. Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227. Gómez-Gómez, L., Felix, G., and Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277-84. Gomez-Gomez, L., Felix, G., and Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284 Graham, I.A., and Eastmond, P.J. (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog. Lipid Res. 41, 156–181 Gu, Y. Q., Wildermuth, M. C., Chakravarthy, S., Loh, Y. T., Yang, C., He, X., Han, Y., and Martin, G. B. (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activates defense responses when expressed in Arabidopsis. Plant Cell 14, 817-831. Hamilton, D.W., Hills, A., Kohler, B., and Blatt, M.R. (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl. Acad. Sci. USA 97, 4967-72. Hayashi, M., and Nishimura, M. (2003) Entering a new era of research on plant peroxisomes. Curr. Opin. Plant Biol. 6, 577–582 Hervé, C., Dabos, P., Galaud, J.P., Rougé, P., and Lescure, B. (1996) Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J. Mol. Biol. 258, 778-788. Hervé, C., Serres, J., Dabos, P., Canut, H., Barre, A., Rougé, P., and Lescure, B. (1999) Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol. Biol. 39, 671-682. Hooley, R., Neill, S.J., Hancock, J.T., and Harter, K. (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3(6), e2491. Huang, J., Cardoza, Y.J., Schmelz, E.A., Raina, R., Engelberth, J., and Tumlinson, J.H. (2003) Differential volatile emission and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217, 767-775. Ichida, A.M., Pei, Z.M., Baizabal-Aguirre, V., Turner, K.J., Schroeder, J.I. (1997) Expression of a Cs+- resistant guard cell K+channel confers Cs+ -resistant light-induced stomatal opening in transgenic Arabidopsis. Plant Cell 9, 1843–1857 Jeworutzki, E., Roelfsema, M.R., Anschutz, U., Krol, E., Elzenga, J.T., Felix, G., Boller, T., Hedrich, R., and Becker, D. (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J. 62, 367-378 Jouanneau, J.P., Lapous, D., and Guern, J. (1991) In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol. 96, 459–466. Kamada, T., Nito, K., Hayashi, H., Mano, S., Hayashi, M., and Nishimura, M. (2003) Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol. 44, 1275–1289 Kanzaki, H., Saitoh, H., Takahashi, Y., Berberich, T., Ito, A., Kamoun, S., andTerauchi, R. (2008). NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228, 977-987. Klüsener, B., Young, J.J., Murata, Y., Allen, G.J., Mori, I.C., Hugouvieux, V., and Schroeder, J.I. (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol. 130, 2152-63. Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., and Schroeder, J.I. (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO. J. 22, 2623-33. Li, J., Brader, G., and Palva, E.T. (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16, 319–331. Liu, J., Elmore, J.M., Fuglsang, A.T., Palmgren, M.G., Staskawicz, B.J., and Coaker, G. (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol. 7(6), e1000139. Loake, G., and Grant, M. (2007) Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol. 10, 466–472. Ludwig-Müller, J., Sass, S., Sutter, E.G., Wodner, M., and Epstein, E. (1993) Indole-3-butyric acid in Arabidopsis thaliana: I. Identification and quantification. Plant Growth Regul. 13, 179–187. Luna, A., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. (2010) Callose deposition: a multifaceted plant defence response. Molecular Plant–Microbe Interactions 24, 183–193. Ma, S.W., Morris, V.L., and Cuppels, D.A. (1991) Characterization of a DNA region required for the production of the phytotoxin coronatine by Pseudomonas syringae pv. tomato. Mol. Plant Microbe Interact 4, 69–74 McAinsh, M.R., Brownlee, C., and Hetherington, A.M. (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2t precedes stomatal closure. Nature 343, 186–188. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S-Y. (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969-80. Melotto, M., Underwood, W., and He, S.Y. (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46, 101-122. Mori, I.C., Pinontoan, R., Kawano, T., and Muto, S. (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 42,1383–1388. Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y. and Murata, Y. (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143, 1398–1407. Murata, Y., Pei, Z.M., Mori, I,C., and Schroeder, J.I. (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13, 2513–2523 Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F., and Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089-99. Nakayama, M., Koshioka, M., Matsui, H., Ohara, H., Mander, L.N., Leitch, S.K., Twitchin, B., Kraft-Klaunzer, P., Pharis, R.P., and Yokota, T. (2001) Endogenous gibberellins in immature seeds of Prunus persica L.: identification of GA118, GA119, GA120, GA121, GA122 and GA126. Phytochem. 57, 749–758. Nicaise, V., Roux, M., and Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: Pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150, 1638– 1647. Olsen, L.J., and Harada, J.J. (1995) Peroxisomes and their assembly in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 123–146 Pandey, S.P., and Somssich, I.E. (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol. 150, 1648–1655 Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734 Pozo, M.J., Van Loon, L.C., and Pieterse, C.M.J. (2004) Jasmonates—signals in plant-microbe interactions. J. Plant Growth Regul. 23, 211–222. Reumann, S. (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol. 135, 783–800 Riou, C., Hervé, C., Pacquit, V., Dabos, P., and Lescure, B. (2002) Expression of an Arabidopsis lectin kinase recptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiology and Biochemistry 40, 431-438. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8,1809-1819. Shinshi, H., Mohnen, D., and Meins, F. (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc. Nat. Acad. Sci. USA 84, 89-93 Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., and Waner, D. (2001) Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 627–658 Shiu, S.H., and Bleecker, A.B. (2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE 2001, re22. Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A. (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134, 1536–1545. Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A. (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134, 1536-1545. Torres, M.A., and Dangl, J.L. (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8, 397–403. Torres, M. A., Jones, J. D. G., and Dangl, J. L. (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373-378. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E., and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell 4, 645-656. Van Loon, L.C., Geraats, B.P.J., and Linthorst, H.J.M. (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11, 184–191. Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X. (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17, 1784–1790 Walker, J.C. (1994). Structure and function of the receptor-like protein kinases of higher plants. Plant Mol. Biol. 26, 1599-1609. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inze, D., and Van Camp, W. (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. Embo. J. 16, 4806–4816. Zeng, W., and He, S.Y. (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 153, 1188-1198. Zeng, W., Melotto, M., and He, S.Y. (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21, 599-603. Zhang, W., He, S.Y. and Assmann, S.M. (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J. 56(6), 984-996. Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., Zou, Y., Long, C., Lan, L., Chai, J., Chen, S., Tang, X., and Zhou, J.M. (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1, 175-85. Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W., and Song, C.P. (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 126, 1438-48. Zimmerli, L., Jakab, C., Metraux, J.P., and Mauch-Mani, B. (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920–12925. Zimmerli, L., Hou, BH., Tsai, C.H., Jakab, G., Mauch-Mani, B., and Somerville, S. (2008) The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. The Plant Journal 53, 144–156. Zolman, B.K., Martinez, N., Millius, A., Adham, A.R., and Bartel, B. (2008). Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180, 237–251. Zolman, B.K., Yoder, A., and Bartel, B. (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156, 1323–1337. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66670 | - |
| dc.description.abstract | 植物氣孔可以限制病原菌進入葉子中,因此在植物的第一道免疫防禦反應中扮演著重要的角色。但是當接觸到病原菌後,調控氣孔開關的機制還不甚清楚。在這裡我們發現了在阿拉伯芥中的凝集素受體激酶LecRK-V.5扮演著一個負向調控氣孔免疫的角色。當LecRK-V.5失去功能,並利用表面感染法感染細菌性斑點病原菌Pseudomonas syringae pv tomato DC3000之後,植物會增加對此並原菌的抵抗力。但是當我們用注射法感染植物,失去LecRK-V.5功能的植物感染力與野生型植物並無太大差異。這暗示著LecRK-V.5可作用在植物的早期防禦。過度表現LecRK-V.5會使植物對Pst DC3000較敏感,這個現象也可歸咎於過度表現LecRK-V.5會使氣孔在處理Pst DC3000之後有較早恢復開關的現象。此外,過度表現LecRK-V.5在處理病源相關分子模式Pathogen-associated molecular patterns (PAMPs)以及H2O2之後喪失了氣孔開關的能力。這些結果提供了一個LecRK-V.5可負向調控在ROS合成上游的氣孔免疫在基因層次上的證據,也顯示了凝集素受體激酶家族在氣孔調節上的一個新功能。
引朵基丁酸反應基因3(IBR3)長久以來被認為的功能是一個參予在引朵基丁酸轉換成引朵基乙酸之間的一個酵素。在這裡我們證實了IBR3可能也在植物免疫防禦反應中扮演著一個角色。過度表現IBR3使得植物對於Pst DC3000有較高的敏感性,也有植物防禦反應降低的情形。此外,在處理Pst DC3000分泌系統3缺失的Pst DC3000 hrcC-以及PAMPs之後,降低植物PAMPs誘發免疫反應也發生在過度表現IBR3的植物中。這些結果提供了IBR3參予在植物PAMPs誘發免疫反應的一個新角色。 | zh_TW |
| dc.description.abstract | Stomata play an important role in plant innate immunity by regulating stomatal closure upon pathogen attack, but the mechanisms regulating stomatal closure are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5) negatively regulates stomatal closure. Previously in our lab, loss of LecRK-V.5 function was shown to increase resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000, but not to infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. To further evaluate a possible involvement of LecRK-V.5 in Arabidopsis disease resistance, a gain-of-function approach was used. Overexpression of LecRK-V.5 was associated with early stomatal reopening after Pst DC3000 treatment and a defective stomatal closure after PAMPs treatment could be correlated with sensibility to Pst DC3000. Stomata of lines overexpressing LecRK-V.5 had normal response to MeJA and SA, but were insensitive to ABA. However, stomata of lines overexpressing LecRK-V.5 showed normal response to H2O2. These results provide genetic evidences that LecRK-V.5 negatively regulates ABA-mediated stomatal closure upstream of ROS synthesis, revealing a novel receptor-like kinase family with a function in stomatal movement.
IBR3 gene is known the function in the conversion of IBA to IAA. Here we show that IBR3 may also play a role in plant defense responses. Lines overexpressing IBR3 demonstrated increased susceptibility to Pst DC3000 and a weaker activation of defense responses upon Pst DC3000 infection. The increased susceptibility phenotype of IBR3 overexpressors to Pst DC3000 could indeed be correlated with a defective SA defense signaling and impairment in pattern-triggered immunity (PTI) activation. Notably, PTI-mediated callose deposition and ROS production, and accumulation of the PTI-responsive transcript FRK1 were delayed in lines overexpressing IBR3. These results suggest a new function for IBR3 in plant defense response against bacterial pathogens. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:50:12Z (GMT). No. of bitstreams: 1 ntu-100-R98b42025-1.pdf: 673184 bytes, checksum: 089bf37681f0f0071e7f8a826bca5c97 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii List of Figures iv Abbreviations v Introduction 1 Recognition of pathogen-associated molecular patterns 1 PAMP-triggered immunity 2 Role of stomata in plant disease resistance 4 The functional role of receptor-like kinases 6 The characteristic of LecRK-V.5 and its possible role in plant immunity 8 IBR genes classes and the characteristics of IBR3 9 Isolation of LecRK-V,5 and IBR3 13 Objectives 15 Material and Methods 16 Biological Materials and Growth Conditions 16 Bacteria infection assays 16 Callose Deposition 17 Stomatal experiments 18 ROS production 19 Growth condition for PTI Marker gene expression study 19 IAA Extraction and Quanitfication 20 RNA Extraction and Gene Expression Analysis 22 Results 24 LecRK-V.5 negatively regulates disease resistance to bacteria. 24 Pathogen-phenotype of LecRK-V.5 gain-of-function lines is associated with stomatal immunity. 24 A negative role for LecRK-V.5 in PAMP-induced stomatal closure 26 LecRK-V.5 acts in ABA-mediated stomatal closure. 27 IBR3 is induced in response to Pseudomonas syringae pv tomato (Pst) DC3000 infection 28 Lines overexpressing IBR3 exhibit enhanced susceptibility to Pst DC3000 29 Defense responses mediated by SA after Pst DC3000 infection is reduced in the IBR3 overexpression lines 30 Overexpression of IBR3 induces plant susceptibility by suppressing callose deposition 31 Overexpression of IBR3 suppresses plant innate immune gene expression 32 PAMPs-induced oxidative burst is reduced in the IBR3 overexpression lines 32 Discussion 33 LecRK-V.5 negatively regulate ABA-mediated stomatal closure 33 IBR3 plays a role in PTI 38 Conclusion and Future Perspectives 43 Figures 45 References 66 | |
| dc.language.iso | en | |
| dc.subject | 氣孔免疫 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | PAMP誘發免疫反應 | zh_TW |
| dc.subject | 細菌性斑點病原菌 | zh_TW |
| dc.subject | Arabidopsis thaliana | en |
| dc.subject | Pseudomonas syringae pv tomato DC3000 | en |
| dc.subject | plant PTI response | en |
| dc.subject | stomatal immunity | en |
| dc.title | 凝集素受體激酶LecRK-V.5與引朵基丁酸反應基因3參與在病原相關分子模式引發的免疫反應在阿拉伯芥中 | zh_TW |
| dc.title | Involvement of LecRK-V.5 and IBR3 in PAMP-triggered immunity in Arabidopsis Thaliana | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張英?(Ing-Feng Chang),林乃君(Nai-Chun Lin) | |
| dc.subject.keyword | 阿拉伯芥,細菌性斑點病原菌,PAMP誘發免疫反應,氣孔免疫, | zh_TW |
| dc.subject.keyword | Arabidopsis thaliana,Pseudomonas syringae pv tomato DC3000,plant PTI response,stomatal immunity, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-11-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 657.41 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
