請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66653
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李明亭(Ming-Ting Lee) | |
dc.contributor.author | Kai-Yun Huang | en |
dc.contributor.author | 黃凱筠 | zh_TW |
dc.date.accessioned | 2021-06-17T00:49:06Z | - |
dc.date.available | 2014-02-08 | |
dc.date.copyright | 2012-02-08 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-12-05 | |
dc.identifier.citation | 1. Milner RJ, Lai C, Nave KA, Lenoir D, Ogata J, et al. (1985) Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell 42: 931-939.
2. Nave KA, Lai C, Bloom FE, Milner RJ (1987) Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci U S A 84: 5665-5669. 3. Yan Y, Lagenaur C, Narayanan V (1993) Molecular cloning of M6: identification of a PLP/DM20 gene family. Neuron 11: 423-431. 4. Schweitzer J, Becker T, Schachner M, Nave KA, Werner H (2006) Evolution of myelin proteolipid proteins: gene duplication in teleosts and expression pattern divergence. Mol Cell Neurosci 31: 161-177. 5. Yan Y, Narayanan V, Lagenaur C (1996) Expression of members of the proteolipid protein gene family in the developing murine central nervous system. J Comp Neurol 370: 465-478. 6. Zhao J, Iida A, Ouchi Y, Satoh S, Watanabe S (2008) M6a is expressed in the murine neural retina and regulates neurite extension. Mol Vis 14: 1623-1630. 7. Cooper B, Werner HB, Flugge G (2008) Glycoprotein M6a is present in glutamatergic axons in adult rat forebrain and cerebellum. Brain Res 1197: 1-12. 8. Baumrind NL, Parkinson D, Wayne DB, Heuser JE, Pearlman AL (1992) EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones. Dev Dyn 194: 311-325. 9. Lagenaur C, Kunemund V, Fischer G, Fushiki S, Schachner M (1992) Monoclonal M6 antibody interferes with neurite extension of cultured neurons. J Neurobiol 23: 71-88. 10. Alfonso J, Fernandez ME, Cooper B, Flugge G, Frasch AC (2005) The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. Proc Natl Acad Sci U S A 102: 17196-17201. 11. Mukobata S, Hibino T, Sugiyama A, Urano Y, Inatomi A, et al. (2002) M6a acts as a nerve growth factor-gated Ca(2+) channel in neuronal differentiation. Biochem Biophys Res Commun 297: 722-728. 12. Wu DF, Koch T, Liang YJ, Stumm R, Schulz S, et al. (2007) Membrane glycoprotein M6a interacts with the micro-opioid receptor and facilitates receptor endocytosis and recycling. Journal of Biological Chemistry 282: 22239-22247. 13. Rothschild SC, Easley CAt, Francescatto L, Lister JA, Garrity DM, et al. (2009) Tbx5-mediated expression of Ca(2+)/calmodulin-dependent protein kinase II is necessary for zebrafish cardiac and pectoral fin morphogenesis. Dev Biol 330: 175-184. 14. Halpain S, Spencer K, Graber S (2005) Dynamics and pathology of dendritic spines. Gene Expression in the Central Nervous System 147: 29-37. 15. Clapham DE (2007) Calcium signaling. Cell 131: 1047-1058. 16. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6: 337-350. 17. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71: 473-510. 18. Boks MP, Hoogendoorn M, Jungerius BJ, Bakker SC, Sommer IE, et al. (2008) Do mood symptoms subdivide the schizophrenia phenotype? Association of the GMP6A gene with a depression subgroup. Am J Med Genet B Neuropsychiatr Genet 147B: 707-711. 19. Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. Journal of Neuroscience 18: 8900-8911. 20. Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, et al. (2005) Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131: 43-54. 21. Fuchsova B, Fernandez ME, Alfonso J, Frasch AC (2009) Cysteine residues in the large extracellular loop (EC2) are essential for the function of the stress-regulated glycoprotein M6a. Journal of Biological Chemistry 284: 32075-32088. 22. DeGiorgis JA, Jaffe H, Moreira JE, Carlotti CG, Jr., Leite JP, et al. (2005) Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4: 306-315. 23. Xia Q, Cheng D, Duong DM, Gearing M, Lah JJ, et al. (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7: 2845-2851. 24. Brocco MA, Fernandez ME, Frasch AC (2010) Filopodial protrusions induced by glycoprotein M6a exhibit high motility and aids synapse formation. Eur J Neurosci 31: 195-202. 25. Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156: 837-841. 26. Calabrese B, Halpain S (2005) Essential role for the PKC target MARCKS in maintaining dendritic spine morphology. Neuron 48: 77-90. 27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. 28. Rothschild SC, Lister JA, Tombes RM (2007) Differential expression of CaMK-II genes during early zebrafish embryogenesis. Dev Dyn 236: 295-305. 29. Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y (2007) The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci U S A 104: 6418-6423. 30. Strack S, Choi S, Lovinger DM, Colbran RJ (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. Journal of Biological Chemistry 272: 13467-13470. 31. Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, et al. (1990) KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. Journal of Biological Chemistry 265: 4315-4320. 32. Enslen H, Soderling TR (1994) Roles of calmodulin-dependent protein kinases and phosphatase in calcium-dependent transcription of immediate early genes. Journal of Biological Chemistry 269: 20872-20877. 33. Mochizuki H, Ito T, Hidaka H (1993) Purification and characterization of Ca2+/calmodulin-dependent protein kinase V from rat cerebrum. Journal of Biological Chemistry 268: 9143-9147. 34. Hidaka H, Yokokura H (1996) Molecular and cellular pharmacology of a calcium/calmodulin-dependent protein kinase II (CaM kinase II) inhibitor, KN-62, and proposal of CaM kinase phosphorylation cascades. Adv Pharmacol 36: 193-219. 35. Baraldi PG, Di Virgilio F, Romagnoli R (2004) Agonists and antagonists acting at P2X7 receptor. Curr Top Med Chem 4: 1707-1717. 36. Ledoux J, Chartier D, Leblanc N (1999) Inhibitors of calmodulin-dependent protein kinase are nonspecific blockers of voltage-dependent K+ channels in vascular myocytes. J Pharmacol Exp Ther 290: 1165-1174. 37. Anderson ME, Braun AP, Wu Y, Lu T, Schulman H, et al. (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J Pharmacol Exp Ther 287: 996-1006. 38. Westerfield M, editor (2007) THE ZEBRAFISH BOOK,5th Edition; A guide for the laboratory use of zebrafish (Danio rerio): Eugene, University of Oregon Press. Paperback. 39. Chang MH, Huang CJ, Hwang SP, Lu IC, Lin CM, et al. (2004) Zebrafish heparin-binding neurotrophic factor enhances neurite outgrowth during its development. Biochem Biophys Res Commun 321: 502-509. 40. Chen GD, Chou CM, Hwang SP, Wang FF, Chen YC, et al. (2006) Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay. Biochem Biophys Res Commun 344: 272-282. 41. Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, et al. (2000) Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227: 279-293. 42. Chen YC, Cheng CH, Chen GD, Hung CC, Yang CH, et al. (2009) Recapitulation of zebrafish sncga expression pattern and labeling the habenular complex in transgenic zebrafish using green fluorescent protein reporter gene. Dev Dyn 238: 746-754. 43. Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17: 91-102. 44. Goda Y, Davis GW (2003) Mechanisms of synapse assembly and disassembly. Neuron 40: 243-264. 45. Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, et al. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35: W588-594. 46. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, et al. (2007) p53 activation by knockdown technologies. PLoS Genet 3: e78. 47. Li Y, Allende ML, Finkelstein R, Weinberg ES (1994) Expression of two zebrafish orthodenticle-related genes in the embryonic brain. Mech Dev 48: 229-244. 48. Oxtoby E, Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21: 1087-1095. 49. J. White CL, Y. Yen, G. Salama (1993) A novel cation channel involved in neurite extension. Biophys J 64. 50. Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE, Jr., et al. (2002) Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci U S A 99: 5971-5976. 51. Amores A, Force A, Yan YL, Joly L, Amemiya C, et al. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711-1714. 52. Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, et al. (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14: 1-10. 53. Douard V, Choi HI, Elshenawy S, Lagunoff D, Ferraris RP (2008) Developmental reprogramming of rat GLUT5 requires glucocorticoid receptor translocation to the nucleus. J Physiol 586: 3657-3673. 54. Kassahn KS, Crozier RH, Portner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev Camb Philos Soc 84: 277-292. 55. Hook SS, Means AR (2001) Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41: 471-505. 56. Hanson PI, Schulman H (1992) Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 61: 559-601. 57. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, et al. (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274: 1678-1683. 58. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 206-211. 59. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28: 1342-1354. 60. Braun AP, Schulman H (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57: 417-445. 61. Tombes RM, Faison MO, Turbeville JM (2003) Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene 322: 17-31. 62. Fink CC, Bayer KU, Myers JW, Ferrell JE, Jr., Schulman H, et al. (2003) Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39: 283-297. 63. Clapham DE (1995) Calcium signaling. Cell 80: 259-268. 64. Garic A, Flentke GR, Amberger E, Hernandez M, Smith SM (2011) CaMKII activation is a novel effector of alcohol's neurotoxicity in neural crest stem/progenitor cells. Journal of Neurochemistry 118: 646-657. 65. Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. Journal of Neuroscience 23: 11759-11769. 66. Blanpied TA, Ehlers MD (2004) Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease. Biol Psychiatry 55: 1121-1127. 67. Alfonso J, Aguero F, Sanchez DO, Flugge G, Fuchs E, et al. (2004) Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol. Journal of Neuroscience Research 78: 702-710. 68. Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, et al. (2006) Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 59: 244-251. 69. Konur S, Yuste R (2004) Imaging the motility of dendritic protrusions and axon terminals: roles in axon sampling and synaptic competition. Mol Cell Neurosci 27: 427-440. 70. Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A 94: 14002-14008. 71. McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840: 33-44. 72. Cullen PJ, Lockyer PJ (2002) Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 3: 339-348. 73. Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. Journal of Neuroscience 23: 10645-10649. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66653 | - |
dc.description.abstract | M6A是一個脂質蛋白PLP/DM20家族的一員,它主要表現在神經細胞。M6A最早被發現是以小鼠腦部為抗原製成的單株M6抗體,當時發現M6抗體在小鼠大腦培養的細胞中可以抑制神經纖維的生長而辨識之抗原稱M6A。在斑馬魚這個物種上可以找到兩個M6A,分別是M6Aa跟M6Ab。在活體跟細胞試驗中,我們分別用了PC-12細胞跟斑馬魚來當成我們的研究M6A在絲狀偽足形成(filopodium formation)跟神經纖維生長的材料。我們的研究發現在以神經生長因子(NGF)分化的PC-12細胞中,M6Aa或M6Ab可以促進絲狀偽足的形成數目,而這樣的結果跟哺乳類的M6A的研究是一致的。此外,我們發現M6Ab蛋白上的磷酸化絲氨酸263位置是主要造成M6Ab可以促進在絲狀偽足形成的因素。當絲氨酸263位置被置換成無法進行磷酸化的丙胺酸,則不會促進絲狀偽足的數目的增加。而當絲氨酸263位置被置換成模擬磷酸化的天門冬胺酸時,在斑馬魚胚胎中發現會促進神經纖維的生長,然而在正常的M6Ab卻不行,而且還會造成抑制。在利用特定核酸序列位置的原位雜交技術跟反轉錄聚合酶鏈式反應中,發現在組織表現上M6Aa跟M6Ab都大量表現在成魚的眼睛跟腦部。在胚胎時期的表現中,M6Aa跟M6Ab當出生後二十四到九十六小時時表現在眼睛、端腦、後腦。在四十八小時後則集中在腦部。利用反義核酸合成(morpholino)發現當減少M6Aa跟M6Ab表現的時候,發育上的斑馬魚會有腦部跟尾巴的畸形以及身軀的縮短。利用反義核酸合成減少M6Aa跟M6Ab表現時,鈣離子的細胞流入會減少,一些鈣調控的基因表現會增加並且CaMKII的活性也會增加。總結上述,我們的研究發現M6Ab絲氨酸263這個位置是影響M6Ab再造成絲狀偽足形成數目增加的主要變因。當反義核酸合成減少M6Aa跟M6Ab表現時會引發細胞自然凋亡增加,鈣離子細胞流入會減少並增加一些鈣調控的基因表現及CaMKII的活性,在此暗示M6A對於鈣離子的一些調控扮演很重要的角色。 | zh_TW |
dc.description.abstract | M6A is a member of the proteolipid protein (PLP/DM20) family and expressed specifically in neurons. M6A was first identified in the adult mouse brain as an antigen reacting with the monoclonal M6 antibody that was shown to cause disruption of normal neurite extension in cultured neurons from mouse cerebellum. There are duplicated forms of zebrafish M6A proteins, M6Aa and M6Ab. In in vivo experiments, we used both PC-12 cells and zebrafish to investigate the role of zebrafish M6Aa and M6Ab in filopodium formation and neurite outgrowth. We provide evidence demonstrating that zebrafish M6Aa and M6Ab were able to promote extensive filopodium formation in NGF-treated PC-12 cells, similar to the function of mammalian M6A. Furthermore, we showed that phosphorylation at serine 263 of zebrafish M6Ab contributed to this induction. Abolishing serine 263 phosphorylation site on M6Ab would greatly affect the extensive filopodium formation in PC-12 cells. On the other hand, only S263D could induce neurite outgrowth, while the wild-type M6Ab also induced neurite outgrowth only in the presence of a constitutively active CaMKII β1 in zebrafish embryos. The expression profile of M6Aa and M6Ab were characterized by whole-mount in situ hybridization and RT-PCR. Expression patterns are similar between M6Aa and M6Ab. RT-PCR results show that M6Aa and M6Ab are both abundant in brain and eye in zebrafish adult tissues. We observed that M6Aa and M6Ab are highly expressed in eye, telencephalon and hiddbrain from 24 to 96 hours post fertilization (hpf), through the whole-mount in situ hybridization. Morpholino-mediated knockdown of either M6Aa or M6Ab expression caused similar defects in brain, anteroposterior (AP) axes and tail development in zebrafish embryo. Knock-down of M6Aa or M6Ab causes decrease in Ca2+ influx and increase in the CaMKII kinase activity which results in increased expression of Ca2+ regulation-related genes. Taken together, our results reveal that the phosphorylation status of zebrafish M6Ab at serine 263 is critical in regulating filopodium formation. Morpholino knockdown of M6Aa or M6Ab triggers apoptosis, decreases Ca2+ influx and increase in CaMKII kinase activity suggesting that M6A protein could act as a Ca2+ regulator and is prerequisite for zebrafish neuronal development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:49:06Z (GMT). No. of bitstreams: 1 ntu-100-D95b46001-1.pdf: 25958477 bytes, checksum: c33483c20bb41a3796f66623f5d7af71 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 .................................................................................................................... 1
Abstract ....................................................................................................................... 2 Abbreviation ............................................................................................................... 4 Introduction ................................................................................................................ 6 Structure and evolutionary conservation of M6A .............................................. 6 Expression profile of M6A proteins ………...................................................... 6 The function of M6A protein ………..…........................................................... 7 PC-12 cells ...….................................................................................................. 7 PLP is involved in neurite outgrowth ................................................................ 8 Filopodium and synaptogenesis ...……………….............................................. 8 Posttranslational modification of M6A proteins ................................................ 9 CaMKII β............................................................................................................ 9 Purpose of the study ................................................................................................. 11 Specific aims .............................................................................................................. 11 Materials and methods ............................................................................................. 12 Zebrafish care ........................................................................................................ 12 Reagents and antibodies ........................................................................................ 12 Cell cultures and plasmid transfection .................................................................. 12 Immunostaining...................................................................................................... 13 Peptide: N-glycosidase F (PNGase F) treatment ................................................... 13 Isolation of the full-length M6Aa, M6Ab and CaMKII β1 from zebrafish ............. 14 Total RNA isolation and RT-PCR analysis of zebrafish M6Aa and M6Ab mRNA .................................................................................................................. 14 Site-directed mutagenesis of zebrafish M6Ab and CaMKII β ............................... 15 Construction of expression plasmids ...................................................................... 16 Morpholino oligonucleotide injection .................................................................... 16 Whole-mount in situ hybridization ........................................................................ 17 Quantitative real-time PCR (qPCR) ....................................................................... 17 Measurement of whole body Ca2+ content ............................................................. 17 CaMKII Activity Assay ......................................................................................... 18 TUNEL assay ......................................................................................................... 18 Protein in-gel digestion .......................................................................................... 18 Enrichment of phosphopeptides from the digested sample .................................... 19 Nanoflow HPLC-MS/MS........................................................................................ 19 Microinjection of the expression plasmid into zebrafish embryos ......................... 21 Statistical analysis .................................................................................................. 21 Results ....................................................................................................................... 22 Zebrafish M6Ab is an N-linked glycoprotein ........................................................ 22 Overexpression of zebrafish M6Ab induces neurite outgrowth in PC-12 cells and filopodium formation in both COS-1 and PC-12 cells ......................................... 22 Serine residue S263 is critical for M6Ab-induced filopodium formation in PC-12 cells ....................................................................................................................... 23 CaMKII and MEK1/2 may be involved in zebrafish M6Ab-induced early neurite outgrowth in NGF-treated PC-12 cells ................................................................. 25 M6Ab can induce neurite outgrowth in the presence of constitutively active CaMKII β1 in zebrafish embryos ......................................................................... 26 The M6Aa phosphorylation of S256, S267, or S270 does not affect the M6Aa induced filopodium formation ............................................................................. 27 Expression profiles of zebrafish M6Aa and M6Ab mRNA in adult tissues and in embryos at different developmental stages ...................................................... 28 Brain, anteroposterior (AP) axes and tail developmental defects induced by M6Aa and M6Ab MO injection ........................................................................... 29 M6Aa and M6Ab MO caused smaller forebrain/midbrain and affected the patterning development of the hindbrain In zebrafish .......................................... 30 Effects of zM6Aa and M6Ab morpholino (MO) on Ca2+ influx and gene expressions of Ca2+ regulation-related genes ...................................................... 30 The phenotypes of M6Aa and M6Ab morphants resemble CaMKII β morphants and both cause CaMKII activity increase during early development .................. 31 Increased apoptosis and reduced axon length in M6Aa and M6Ab injected embryos ................................................................................................................ 32 Discussion................................................................................................................... 34 Conclusion and perspective.......................................................................................39 References ................................................................................................................. 41 Figures ....................................................................................................................... 47 Figure 1. Zebrafish M6Ab is an N-linked glycoprotein ........................................ 47 Figure 2. Overexpression of zM6Ab induce neurite outgrowth and filopodium formation in PC-12 and COS-1 cells ..................................................... 48 Figure 3. Phosphorylation of S263 is critical for regulation of filopodium formation in PC-12 cells ........................................................................ 50 Figure 4.Inhibition of CaMKII and MEK1/2 reduces M6Ab early neurite outgrowth in nerve growth factor (NGF)-differentiated PC-12 cells ...... 53 Figure 5. Expression of M6Ab-GFP and M6Ab(S263D)-GFP driven by a neuron- specific HuC promoter in zebrafish embryos ......................................... 55 Figure 6. The M6Aa phosphorylation of S256, S267, or S270 does not affect the M6Aa induced filopodia formation ....................................................... 57 Figure 7. Expression profiles of zebrafish (D. rerio) M6Aa and M6Ab mRNA by RT-PCR .................................................................................................. 58 Figure 8. Expression M6Aa and M6Ab during embryonic development .............. 59 Figure 9. Embryo morphological changes induced by M6Aa and M6Ab MO ..... 60 Figure 10. M6Aa and M6Ab MO injection affect forebrain, midbrain formation.. 62 Figure 11.Effects of zM6Aa and M6Ab morpholino (MO) in Ca2+ influx and gene expressions of Ca2+ regulation-related genes ............................... 64 Figure 12. The phenotypes of M6Aa and M6Ab morphants resemble CaMKII β morphants and both cause CaMKII activity Increases during early development ......................................................................................... 65 Figure 13. Effects of M6Aa and M6Ab MO injection on acetylated tubulin (AcTub) and apoptosis ......................................................................... 67 Table .......................................................................................................................... 69 Table 1. Primer sets for quantitative RT-PCR ....................................................... 69 Appendices .............................................................................................................. 70 Figure 1. Alignment of amino acid sequences of M6A ......................................... 70 Figure 2. Divergence and conservation of zebrafish proteolipid pairs .................. 71 Figure 3. Cellular Signaling by CaMKs ................................................................ 72 | |
dc.language.iso | en | |
dc.title | 斑馬魚四穿膜醣蛋白M6Aa和M6Ab蛋白在PC-12細胞和斑馬魚胚胎之功能研究 | zh_TW |
dc.title | Functional studies of tetraspanin glycoprotein M6Aa and M6Ab in PC-12 cells and zebrafish embryo | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張茂山(Mau-Sun Chang),張震東(Geen-Dong Chang),黃鵬鵬(Pung-Pung Hwang),黃聲蘋(Sheng-Ping Hwang) | |
dc.subject.keyword | 醣蛋白,偽足運動,神經纖維生長, | zh_TW |
dc.subject.keyword | M6A,glycoprotein,filopodia,PLP,neurite outgrowth,PC-12, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-12-05 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 25.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。