Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorLi-Chang Hungen
dc.contributor.author洪立昌zh_TW
dc.date.accessioned2021-06-17T00:48:35Z-
dc.date.available2021-06-20
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-12-08
dc.identifier.citation[1] M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for
a special wave speed, Bull. Math. Biol., 41 (1979), pp. 835–840.
[2] G. A. Afrouzi, On a nonlinear eigenvalue problem in ODE, J. Math. Anal. Appl.,
303 (2005), pp. 342–349.
[3] S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to
a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), pp. 893–
901.
[4] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics,
combustion, and nerve pulse propagation, in Partial differential equations and
related topics (Program, Tulane Univ., New Orleans, La., 1974), Springer, Berlin,
1975, pp. 5–49. Lecture Notes in Math., Vol. 446.
[5] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama, Exact traveling wave
solutions of three species competition-diffusion systems, preprint.
[6] , Traveling waves with two humps in a competitive lotka-volterra system of three
species, preprint.
[7] R. Cherniha and V. Davydovych, Conditional symmetries and exact solutions
of the diffusive lotka-volterra system, Mathematical and Computer Modelling, 54
(2011), pp. 1238 – 1251.
[8] P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute
of Math., Polish Academy Sci., Zam, 190 (1979), pp. 11–79.
[9] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for
a diffusing Lotka-Volterra system, Nonlinear Anal. Real World Appl., 4 (2003),
pp. 503–524.
[10] P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations
to travelling front solutions, Archive for Rational Mechanics and Analysis, 65 (1977),
pp. 335–361.
[11] P. C. Fife, Mathematical aspects of reacting and diffusing systems, vol. 28 of Lecture
Notes in Biomathematics, Springer-Verlag, Berlin, 1979.
[12] R. A. Fisher, The wave of advance of an advantageous gene, Ann. Eugen, 7 (1936),
pp. 355–369.
[13] X. Hou and A. W. Leung, Traveling wave solutions for a competitive reactiondiffusion
system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008),
pp. 2196–2213.
[14] L.-C. Hung, Traveling wave solutions of competitive-cooperative lotka-volterra systems
of three species, Nonlinear Analysis: Real World Applications, 12 (2011),
pp. 3691 – 3700.
[15] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for
competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), pp. 340–363.
[16] , Existence of standing waves for competition-diffusion equations, Japan J. Indust.
Appl. Math., 13 (1996), pp. 117–133.
[17] , Fisher wave fronts for the Lotka-Volterra competition model with diffusion,
Nonlinear Anal., 28 (1997), pp. 145–164.
[18] , Travelling waves for a Lotka-Volterra competition model with diffusion [translation
of S‾ugaku 49 (1997), no. 4, 379–392; MR1614330 (2000b:92020)], Sugaku
Expositions, 13 (2000), pp. 39–53. Sugaku Expositions.
[19] J. I. Kanel, On the wave front solution of a competition-diffusion system in population
dynamics, Nonlinear Anal., 65 (2006), pp. 301–320.
[20] J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave
speed for a competition-diffusion system, Nonlinear Anal., 27 (1996), pp. 579–587.
[21] , Existence of wave front solutions and estimates of wave speed for a competitiondiffusion
system, Nonlinear Anal., 27 (1996), pp. 579–587.
[22] P. Koch Medina and G. Sch atti, Long-time behaviour for reaction-diffusion
equations on RN, Nonlinear Anal., 25 (1995), pp. 831–870.
[23] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Study of the diffusion
equation with growth of the quantity of matter and its application to a biological
problem.(French) Moscow Univ, Bull. Math, 1 (1937), pp. 1–25.
[24] A. W. Leung, Nonlinear Systems of Partial Differential Equations, Applications to
Life and Physical Sciences, World Scientific Publishing Co., New Jersey, Singapore,
London, 2009.
[25] A. W. Leung, X. Hou, and W. Feng, Traveling wave solutions for Lotka-
Volterra system re-visited, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), pp. 171–
196.
[26] , Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Contin.
Dyn. Syst. Ser. B, 15 (2011), pp. 171–196.
[27] A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive
reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008),
pp. 902–924.
[28] S. Merino, A note on the existence of travelling waves for the Fisher-Kolmogorov
equation via the method of sub- and supersolutions, in International Conference
on Differential Equations (Lisboa, 1995), World Sci. Publ., River Edge, NJ, 1998,
pp. 448–452.
[29] J. D. Murray, Mathematical biology, vol. 19 of Biomathematics, Springer-Verlag,
Berlin, second ed., 1993.
[30] M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,
Hiroshima Math. J., 30 (2000), pp. 257–270.
[31] M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and
nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), pp. 657–696.
[32] M. Tang and P. Fife, Propagating fronts for competing species equations with
diffusion, Archive for Rational Mechanics and Analysis, 73 (1980), pp. 69–77.
[33] A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling wave solutions
of parabolic systems, vol. 140 of Translations of Mathematical Monographs,
American Mathematical Society, Providence, RI, 1994. Translated from the Russian
manuscript by James F. Heyda.
[34] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,
J. Dynam. Differential Equations, 13 (2001), pp. 651–687.
[35] , Erratum to: “Traveling wave fronts of reaction-diffusion systems with delay”
[J. Dynam. Differential Equations 13 (2001), no. 3, 651–687; mr1845097], J. Dynam.
Differential Equations, 20 (2008), pp. 531–533.
[36] L. Zhou and Y. I. Kanel, A new proof of existence of the wave front solutions
for a kind of reaction-diffusion system, in Nonlinear evolutionary partial differential
equations (Beijing, 1993), vol. 3 of AMS/IP Stud. Adv. Math., Amer. Math. Soc.,
Providence, RI, 1997, pp. 469–481.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66647-
dc.description.abstract本作品討論二物種與三物種擴散型洛特卡-佛爾特拉方程組。對二競爭物種組,雙曲函數法用來構建嚴密行進波解。在藤田型結果的基礎之上,發展共存位移法來找二合作物種組的爆破解(和廖嫻)。對競爭-合作混合型三物種組,我們用上下解法來構築行進波解的存在性。以廣義雙曲函數法,可以證明三競爭物種組有嚴密(和三村昌泰等人)和半嚴密行進波解(和裘愉生)。此外,藉由極大值原理,三競爭物種組的行進波解不存在性也可以建立。最終,我們證明由熱傳方程的解可以構造出三競爭物種擴散型組的解。更進一步工作包含如何研究由擴散項引發的長期共存,這是從熱傳方程的解構築出來之解所發現的有趣新現象。zh_TW
dc.description.abstractIn the present work, we study diffusive Lotka-Volterra systems of two-species and three-species. For competitive systems of two species, the tanh method is applied to construct exact traveling wave solutions. Based on the Fujita-type results, the method of shifted coexistence is developed to find blow-up solutions of cooperative systems of two species (with Xian Liao). For competitive-cooperative and competitive systems of three species, we employ the method of super- and subsolutions to establish the existence of traveling wave solutions. By using the generalized tanh method, it is shown that exact (with M. Mimura et al.) and semi-exact (with Yu-Sheng Chiou) traveling wave solutions exist for competitive systems of three species. In addition, nonexistence of traveling wave solutions to competitive systems of three species is also established by the maximum principle. Finally, we show solutions to competitive systems of three species can be constructed from the solutions of the heat equation. Further investigations include how to study diffusion-enhanced long-term coexistence, which is an interesting new phenomenon discovered by means of the solutions constructed from the heat equation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:48:35Z (GMT). No. of bitstreams: 1
ntu-100-D93221004-1.pdf: 627292 bytes, checksum: 6378584096330b27b829b98a7c3a2303 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
I Lotka-Volterra Systems of Two-Species 3
2 Competition Models: Tanh method 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Exact traveling wave solutions . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 (e1, e2)-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 (e1, e4)-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 (e2, e3)-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 (e2, e4)-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Cooperation Models: Shifted-Coexistence Method 19
3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
II Lotka-Volterra Systems of Three-Species 25
4 Diffusion-enhanced long-term coexistence: approach to constructing solutions
for a diffusive Lotka-Volterra system from solutions of the heat
equation 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Diffusion-enhanced long-term coexistence . . . . . . . . . . . . . . . . . . 36
4.4 Alternative approach to space-time separated solutions: the method of
exp-sin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Nonmonotone Traveling Wave Solutions for Diffusive Lotka-Volterra
Systems of Three Competing Species 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6 Traveling Wave Solutions of Competitive-Cooperative Lotka-Volterra
Systems of Three Species 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Existence of Traveling Fronts . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Exact Traveling Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7 Nonexistence of Traveling Wave Solutions 73
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8 Semi-Exact Traveling Wave Solutions 77
8.1 Semi-exact two-humps solutions . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Semi-exact nonmonotone traveling wave solutions . . . . . . . . . . . . . 82
8.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2.2 Type-I Solutions: (i, m, n) = (2, 4, 1) . . . . . . . . . . . . . . . . 82
8.2.3 Type-II Solutions: (i, m, n) = (3, 1, 2) . . . . . . . . . . . . . . . . 84
8.2.4 Type-III Solutions: (i, m, n) = (3, 2, 2) . . . . . . . . . . . . . . . 85
8.2.5 Type-IV Solutions: (i, m, n) = (3, 4, 1) . . . . . . . . . . . . . . . 86
8.2.6 Type-V Solutions: (i, m, n) = (4, 1, 1) . . . . . . . . . . . . . . . . 87
8.2.7 Type-VI Solutions: (i, m, n) = (2, 4, 1) . . . . . . . . . . . . . . . 88
8.2.8 Type-VII Solutions: (i, m, n) = (4, 3, 1) . . . . . . . . . . . . . . . 89
dc.language.isoen
dc.subject行進波解zh_TW
dc.subject嚴密解zh_TW
dc.subject洛特卡-佛爾特拉zh_TW
dc.subjectLotka-Volterraen
dc.subjectTraveling wave solutionsen
dc.subjectExact solutionsen
dc.title論洛特卡-佛爾特拉方程組之解zh_TW
dc.titleOn Solutions of Diffusive Lotka-Volterra Systemsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳宜良(I-Liang Chern),陳建隆(Jann-Long Chern),郭忠勝(Jong-Sheng Guo),夏俊雄(Chun-Hsiung Hsia),林太家(Tai-Chia Lin)
dc.subject.keyword行進波解,嚴密解,洛特卡-佛爾特拉,zh_TW
dc.subject.keywordTraveling wave solutions,Exact solutions,Lotka-Volterra,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2011-12-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
612.59 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved