Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章
dc.contributor.authorKuo-Wei Wangen
dc.contributor.author王國威zh_TW
dc.date.accessioned2021-06-17T00:48:28Z-
dc.date.available2012-01-17
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-12-13
dc.identifier.citationAbedian A., Ghiasi M.H., Dehghan-Manshadi B., 2006. Effect of a linearexponential penalty function on the GA’s efficiency in optimization of a laminated composite panel. International Journal of Computational Intelligence 2(1): 5–11.
Anelli G., Broggi A., Destri G., 1998. Decomposition of arbitrarily shaped binary morphological structuring elements using genetic algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2): 217–224.
Atiya A.F., El-Shoura S.M., Shaheen S.I., El-Sherif M.S., 1999. A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans. on Neural Networks 10(2): 402–409.
Cai X., McKinney D.C., Lasdon L.S., 2001. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources 24(6): 667–676.
Cai X., McKinney D.C., Lasdon L.S., 2002. A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resources Research 38(6): 21/1–21/14.
Chandramouli V., Raman H., 2001. Multireservoir modeling with dynamic programming and neural network. Journal of Water Resources Planning and Management 127(2): 89–98.
Chang L.C., 2008. Guiding rational reservoir flood operation using penalty-type genetic algorithm. Journal of Hydrology 354: 65–74.
Chang L.C., Chang F.J., 2001. Intelligent control for modelling of real-time reservoir operation. Hydrological Processes 15(9): 1621–1634.
Chang F.J., Chang Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advanced in Water Resources 29: 1–10.
Chang Y.T., Chang L.C., Chang F.J., 2005. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes 19(7): 1431–1444.
Chang F.J., Chang L.C., Huang H.L., 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16(13): 2577–2588.
Chang L.C., Chang F.J., Hsu H.C., 2010a. Real-Time Reservoir Operation for Flood Control Using Artificial Intelligent Techniques. International Journal of Nonlinear Sciences and Numerical Stimulation 11(11): 887–902.
Chang L.C., Chang F.J., Wang K.W., Dai S.Y., 2010b. Constrained genetic algorithms for optimizing multi-use reservoir operation. Journal of Hydrology 390: 66–74.
Chang F.J., Chen L., 1998. Real-coded genetic algorithm for rule-based flood control reservoir management. Water Resources Management 12(3): 185–198.
Chang F.J., Chen Y.C., 2001. A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction. Journal of Hydrology 245: 153–164.
Chang F.J., Chen Y.C., 2003. Estuary water-stage forecasting by using Radial Basis Function neural network. Journal of Hydrology 270: 158–166.
Chang F.J., Chen L., Chang L.C., 2005. Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes 19(11): 2277–2289.
Chang F.J., Chiu Y.C., 2007. A Study of Development of Intelligent Reservoir Operating Strategy for Allocating Agricultural Water Use during the Drought Period. The Council of Agriculture Press, Executive Yuan, R.O.C. 24pp.
Chaves P., Kojiri T., 2007. Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Advances in Water Resources 30(5): 1329–1341.
Chen Y.H., Chang F.J., 2009. Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology 367: 125–137.
Chiu Y.C., Chang L.C., Chang F.J., 2007. Using a hybrid genetic algorithm–simulated annealing algorithm for fuzzy programming of reservoir operation. Hydrological Processes 21(23): 3162–3172.
Coulibaly P., Anctil F., Bobee B., 2001. Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering 6(5): 367–376.
Dawson C.W., Wilby R.L., 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 43(1): 47–67.
Dawson C.W., Wilby R.L., 2001. Hydrological modeling using artificial neural networks. Progress in Physical Geography 25(1): 80–108.
Debels D., Vanhoucke M., 2007. A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Operations Research 55(3): 457–469.
Deep K., Dipti, 2008. A self-organizing migrating genetic algorithm for constrained optimization. Applied Mathematics and Computation 198(1): 237–250.
Fredericks J.W., Labadie J.W., Altenhofen J.M., 1998. Decision support system for conjunctive stream-aquifer management. Journal of Water Resources Planning and Management 124(2): 69–78.
French M.N., Krajewski W.F., Cuykendall R.R., 1992. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137: 1–31.
Goldberg D.E., 1989. Genetic algorithms in search, optimization, and machine learning, 2nd edn. Addison-Wesley: Reading, MA.
Grygier T.C., Stedinger J.R., 1985. Algorithms for optimizing hydropower system operation. Water Resources Research 21(1): 1–10.
Hasebe M., Nagayama Y., 2002. Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Advances In Engineering Software 33(5): 245–260.
Holden P., Thobani M., 1996. Tradable water rights: A property rights approach to resolving water shortages and promoting investment. Policy research working paper 1627. The World Bank, Washington, DC..
Holland J.H., 1975. Adaptation in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press.
Hong Y., Chiang Y.M., Liu Y., Hsu K.L., Sorooshian S., 2006. Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. International Journal of Remote Sensing 27: 5165–5184
Houcks M.H., 1982. Real-time daily reservoir operation by mathematical programming. Water Resources Research 16(1): 196–200.
Hsu K.L., Gupta H.V., Gao X.G., Sorooshian S., 1999. Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resources Research 35(5): 1605–1618.
Huang W.C., Chou C.C., 2005. Drought early warning system in reservoir operation: Theory and practice. Water Resources Research 41: W11406.
Huang W.C., Chou C.C., 2008. Risk-based drought early warning system in reservoir operation. Advances in Water Resources 31: 649–660.
Huang W.C., Yuan L.C., 2004. A drought early warning system on real-time multireservoir operations. Water Resources Research 40: W0641.
Huang W.C., Yuang L.C., Lee C.M., 2002. Linking genetic algorithms with stochastic dynamic programming to the long-term operation of a multireservoir system. Water Resources Research 38(12): 40.1–.9.
Jain S.K., Das A., Srivastava D.K., 1999. Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management 125(5): 263–271.
Jang J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Systems, Man, and Cybernetics Society 23(3): 665–685.
Karbowski A., Malinowski K., Niewiadomska-Szynkiewicz E., 2005. A hybrid analytic rule-based approach to reservoir system management during flood. Decision Support Systems 38(4): 599–610.
Karunasinghe D.S.K., Liong S.Y., 2006. Chaotic time series prediction with a global model: artificial neural network. Journal of Hydrology 323(1-4): 92–105.
Kato K., Sakawa M., 2003. Genetic algorithms with decomposition procedures for multidimensional 0-1 knapsack problems with block angular structures. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 33(3): 410–419.
Katsifarakis K.L., Petala Z., 2006. Combining genetic algorithms and boundary elements to optimize coastal aquifers’ management. Journal of Hydrology 327(1-2): 200–207.
Kim S., Weissman J.B., 2003. A GA-based approach for scheduling decomposable data grid applications. Proceedings of the 2004 International Conference on Parallel Processing.
Lallahem S., Mania J., 2003. Evaluation and forecasting of daily groundwater outflow in a small chalky watershed, Hydrological Processes 17: 1561–1577.
Lee Y.C., Tzeng L.K., Tzeng J.S., 2005. Irrigation Water Management Strategies for Mass Fallow Land. 2005 Conference on Paddy Farming Multi-Functionality, Taichung, R.O.C.: 109–122.
Lohani V.K., Loganathan G.V., 1997. An early warning system for drought management using the Palmer drought index. Journal of the American Water Resources Association 33(6): 1375–1386.
Loucks D.P., Stedinger J.R., Haith D.A., 1981. Water resources systems planning and management. New Jersey, Prentice-Hall: 320–332.
Luk K.C., Ball J.E., Sharma A., 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227: 56–65.
Mausser H.E., Lawrence S.R., 1995. Exploiting block structure to improve resource-constrained project schedules. Metaheuristics 1995: State of the Art, F. Glover, I. Osman, and J. Kelley (editors), Kluwer.
Mays L.W., Tung Y.K., 1992. Hydrosystems engineering and management. New York, McGraw–Hill.
McKinney D.C., Cai X., Rosegrant M.W., Ringler C., Scott C.A., 1999. Modeling water resources management at the basin level: Review and future directions. SWIM Paper No.6, International Water Management Institute, Colombo, Sri Lanka.
Michalewicz Z., Schoenauer M., 1996. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation 4: 1–32.
Oliveira R., Loucks D.P., 1997. Operating rules for multireservoir systems. Water Resources Research 33(4): 839–852.
Palpant M., Artigues C., Michelon P., 2004. LSSPER: solving the resource-constrained project scheduling problem with large neighbourhood search. Annals of Operations Research 131: 237–257.
Ponnambalam K., Karray F., Mousavi S.J., 2003. Minimizing variance of reservoir system operations benefits using soft computing tools. Fuzzy Sets and Systems 139(2): 451–461.
Raman H., Chandramouli V., 1996. Deriving a general operating policy for reservoirs using neural network. Journal of Water Resources Planning and Management 122(5): 342–347.
Reznicek K.K., Simonovic S.P., 1990. An improved algorithm for hydropower optimization. Water Resources Research 26(2): 189–198.
Richardson J.T., Palmer M.R., Liepins G.E., Hilliard M., 1989. Some guidelines for genetic algorithms with penalty functions. In: Proceedings of the Third International Conference on Genetic Algorithms Table of Contents: 191–197.
Sahoo G.B., Ray C., 2006. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317(1-2): 63–80.
Sajikumar N., Thandaveswara B.S., 1999. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216: 32–55.
Shamseldin A.Y., 1997. Application of a neural network technique to rainfall-runoff modeling. Journal of Hydrology 199: 272–294.
Simonovic S.P., 2009. Managing Water Resources: Methods and tools for a systems approach. UNESCO, Paris and Earthscan James & James, London.
Simonovic S.P., Burn D.H., 1989. An improved methodology for short-term operation of a single multipurpose reservoir. Water Resources Research 25(1): 1–8.
Sivakumar M.V.K., Glinni A.F., 2002. Applications of crop growth models in the semiarid regions. In: Ahuha, L.R., Ma, L., Howell, T.A. (Eds.), Agricultural System Models in Field Research and Technology Transfer. Lewis Publishers 178–205.
Sprecher A., 2002. Network decomposition techniques for resource constrained project scheduling. Journal of the Operational Research Society 53(4): 405–414.
Suen J.P., Eheart J.W., 2006. Reservoir management to balance ecosystem and human needs: incorporating the paradigm of the ecological flow regime. Water Resources Research 42(3): W03417.
Toth E., Brath A., Montanari A., 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239: 132–147.
Tsai T.S., 1996. The impact on agricultural water demand due to partial sabbath of paddy farming. Master thesis. Department of Agricultural Engineering, National Taiwan University, 84pp.
UNESCAP (United Nations, Economic and Social Commission for Asia and the Pacific), 2000. Principles and Practices of Water Allocation among Water-Use Sectors. ESCAP Water Resources Series No. 80, Bangkok, Thailand.
Wang S.F., 2006. Spatial analysis for impact of fallow decision on regional irrigation demand. Master thesis, Department of Bioenvironmental Systems Engineering, National Taiwan University. 78pp.
Wang K.W., Chang L.C., Chang F.J., 2011. Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation. Advances in Water Resources 34(10): 1343–1351.
Westphal K.S., Vogel R.M., Kirshen P., Chapra S.C., 2003. Decision support system for adaptive water supply management. Journal of Water Resources Planning and Management 129(3): 165–177.
Wilhite D.A., Sivakumar M.V.K., Wood D.A., 2000. Early warning systems for drought preparedness and drought management. Proceedings of an expert Group Meeting in Lisbon, Portugal, 5–7 September. Geneva (Switzerland): World Meteorological Organization.
Wurbs R.A., 2001. Assessing water availability under a water rights priority system. Journal of Water Resources Planning and Management 127(4): 235–243.
Yeh WW-G., 1985. Reservoir management and operation models: a state-of-the-art review. Water Resources Research 21(12): 1797–1818.
Young G.K., 1967. Finding reservoir operating rules. Journal of the Hydraulics Division, American Society of Civil Engineers 93(6): 297–321.
Zealand C.M., Burn D.H., Simonovic S.P., 1999. Short term stream flow forecasting using artificial neural networks. Journal of Hydrology 214: 32–48.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66645-
dc.description.abstract水資源管理包含了很多面向,例如長期的最佳水庫操作、水資源分配等問題。長期的水庫操作是一個具有相當多變數的複雜問題,在進行最佳化搜尋時難以有效地找到最佳解。此外,由於農業用水容忍度較高,在乾旱期間用水遭遇不足時,往往向農業尋求調整支援,多以停灌休耕方式來解決用水不足的窘境。有鑑於此,本研究分別研擬(1)最佳化搜尋遇到變數過多時的變數拆解策略,以及(2)乾旱時期停灌休耕的管理系統。
本研究首先提出多階層交互遺傳演算法(MIGA),其能將複雜的系統拆解成許多子系統,並提供關鍵訊息於各階層之間傳遞以銜接子系統之間的關聯。本研究以台灣北部之石門水庫為案例,並採用水庫操作規線模擬結果及單一遺傳演算法搜尋結果一同與MIGA搜尋結果進行比較,結果顯示MIGA不論在效率或效能上皆優於單一遺傳演算法之搜尋成果,MIGA相較水庫操作規線模擬於20年水庫操作的案例顯示,效能之改善率超過15%,並同案例中MIGA相較單一遺傳演算法效能之改善率超過25%,且節省80%的時間。
此外,北台灣因用水量逐年成長導致用水壓力亦相對增加,復加氣候變遷使得缺水情況日趨嚴重;援此,本研究研擬架構停灌休耕的決策過程,並包含三個停灌休耕策略:(1) 缺水門檻的制訂;(2) 適當之停灌休耕比例;(3) 宣布實行停灌休耕的發佈時機。藉由現有庫容及未來入流量資訊進行系統模擬,提供初步缺水資訊及制訂乾旱門檻。當乾旱情況確認之後,使用模糊類神經網路推估不同缺水情勢以分析適合的缺水率,同時反應公共及農業用水之間配水交互影響。最後,停灌休耕發佈時機由M-5規線模擬及GA搜尋成果進行研擬。結果顯示本研究提出之智慧型決策停灌休耕系統係為相當實用的工具,並且對於水資源永續利用能有所助益。本研究成果包含以水庫庫容資訊之缺水門檻,分別於案例 I及II當中呈現低於Q70 – Q60(輕微缺水)與Q90 – Q80(嚴重缺水)兩種不同缺水等級情況,提供水資源決策管理者初步判斷是否發生嚴重缺水情況,並建議愈早發佈所造成之損失較少(以2002年與2004年為例,損失減少約22%)。
本研究主要探討水資源管理當中相當重要之長期最佳水庫操作方法以及水資源不足時之調配決策問題,本研究之MIGA成功地解決長期水庫操作所面臨到的困難,以及智慧型停灌休耕決策系統能建議水資源決策管理者面臨乾旱時期採行之策略。
zh_TW
dc.description.abstractWater resources management, such as long-term optimal reservoir operation or water allocation, is still a difficult task for decision makers. Complicated systems with high dimensional variables such as long-term reservoir operation usually prevent methods from reaching optimal solutions. In addition, the tolerance of water shortage for irrigation use is higher than that of other water uses such as domestic and industrial uses during drought periods. Therefore, in drought periods, the saved water from fallow areas requires to be reallocated for meeting the water demands of public use. This study proposes a variable decomposition strategy and a fallow management system for long-term reservoir operation and fallow management, respectively.
First, a multi-tier interactive genetic algorithm (MIGA) is proposed in this study which decomposes a complicated system (long series) into several small-scale sub-systems (sub-series) where Genetic Algorithm (GA) is applied to each sub-system and the multi-tier (key) information mutually interacts among individual sub-systems so that obtain the optimal solution to long-term reservoir operation. The Shihmen Reservoir in Taiwan is used as a case study. In addition, three long-term operation cases are implemented with the MIGA search, a sole GA search and a simulation based on the M-5 rule curves (the operation guideline of the Shihmen Reservoir) for comparison purpose. The improvement rate of fitness values for MIGA over the M-5 rule curves increases more than 15%. The improvement rate of fitness values for MIGA over sole GA increases more than 25%, and the computation time dramatically decreases 80% in a 20-year long-term operation case. Results demonstrate that MIGA is far more efficient than the sole GA and can successfully and efficiently increase the possibility of achieving an optimal solution.
Second, in the catchment of northern Taiwan, water scarcity becomes more and more serious and water stress and a deduction of water supply to irrigation use due to climatic change becomes major problems as well. This study proposes a framework of strategic pre-fallow decision making processes and addresses three important fallow issues: (1) the threshold of water shortage; (2) the appropriate fallow ratio; and (3) the timing for publicizing the fallow ratio. The first crop of paddy in northern Taiwan is used as a case study. A great number of system simulations based on current reservoir storage and upcoming three-month inflows are used to provide the preliminary judgment of water shortage and then to assign the drought threshold. After the drought situation is substantiated, a neuro-fuzzy network is used to determine the suitable fallow ratio and provide both water shortage information and the impacts of restrictions on irrigation water. Finally, the timing to publicize the fallow ratio is determined through the analysis of current M-5 operation rule curves simulation and genetic algorithms (GAs) search. Results demonstrate that the proposed intelligent fallow decision-making system can be a very useful tool and beneficial for the sustainable use of water resources. Drought thresholds of reservoir storage should be Q70 to Q60 (slight drought) and Q90 to Q80 (severe drought), respectively, when considering an early fallow strategy (Case I) and a late fallow strategy (Case II). The earlier the timing to publicize the fallow ratio is, the less the amount of fallow compensation is (approximately 22% less in this case study).
In sum, the problems of long-term reservoir operation can be successfully solved by MIGA and decision-makers can refer to the decision-making system for fallow strategies proposed in this study when allocating water resources during drought periods.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:48:28Z (GMT). No. of bitstreams: 1
ntu-100-D96622006-1.pdf: 13680418 bytes, checksum: bec939836190df150997e0785595fccd (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
Contents VII
List of figures IX
List of tables XI
Chapter 1 Introduction 1
1.1 Research motivation and objectives 1
1.2 Research concepts and techniques 3
Chapter 2 Literature review 7
2.1 Reservoir operation 7
2.2 Fallow strategy 8
2.3 Genetic Algorithm 10
2.4 Artificial Neural Network 13
Chapter 3 Methodology 15
3.1 Genetic algorithm (GA) 15
3.1.1 Constrained Genetic Algorithm (CGA) 18
3.1.2 Multi-tier interactive genetic algorithm (MIGA) 21
3.2 Adaptive neuro-fuzzy inference system (ANFIS) 25
Chapter 4 Case study 30
4.1 Intelligent long-term reservoir operation for water resources management 31
4.1.1 Reservoir Operation Formulation 33
4.1.2 Multi-tier Interactive Genetic Algorithms (MIGA) 35
4.1.3 Setting parameters of Genetic Algorithms 36
4.1.4 The performance of models for comparison 39
4.2 Intelligent decision-making system for fallow management 40
4.2.1 Issue 1---determine the thresholds of water shortage 45
4.2.2 Issue 2--- determine an appropriate fallow ratio 46
4.2.3 Issue 3--- determine the timing to publicize the fallow ratio 49
4.2.4 Reservoir Operation Formulation 50
4.2.5 Exceedence probability 53
4.2.6 Evaluation of model performance 54
Chapter 5 Results and discussion 55
5.1 Model comparison for long-term reservoir operation 55
5.2 Fallow strategies: threshold, ratio, timing 63
5.2.1 Issue 1-- thresholds of water shortage 63
5.2.2 Issue 2-- determine appropriate fallow ratios 67
5.2.3 Issue 3-- analyze the timing to publicize the fallow ratio 71
Chapter 6 Conclusion and suggestion 78
References 83
Appendix Curriculum Vitae 91
dc.language.isoen
dc.subject水庫操作zh_TW
dc.subject決策zh_TW
dc.subject最佳化zh_TW
dc.subject多階層交互遺傳演算法zh_TW
dc.subject調適性模糊類神經網路zh_TW
dc.subject停灌休耕zh_TW
dc.subject分解zh_TW
dc.subjectMulti-tier interactive genetic algorithms (MIGA)en
dc.subjectReservoir operationen
dc.subjectDecompositionen
dc.subjectFallowen
dc.subjectDecision-makingen
dc.subjectOptimizationen
dc.subjectAdaptive neuro-fuzzy inference system (ANFIS)en
dc.title智慧型區域水資源調配管理與休耕決策系統zh_TW
dc.titleIntelligent regional water resources management and fallow decision-making systemen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃文政,蘇明道,張麗秋,游保杉
dc.subject.keyword最佳化,水庫操作,分解,停灌休耕,決策,多階層交互遺傳演算法,調適性模糊類神經網路,zh_TW
dc.subject.keywordOptimization,Reservoir operation,Decomposition,Fallow,Decision-making,Multi-tier interactive genetic algorithms (MIGA),Adaptive neuro-fuzzy inference system (ANFIS),en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2011-12-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
13.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved