請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66617完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
| dc.contributor.author | Hao-Cheng Tsai | en |
| dc.contributor.author | 蔡皓程 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:46:36Z | - |
| dc.date.available | 2015-02-08 | |
| dc.date.copyright | 2012-02-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-12-28 | |
| dc.identifier.citation | ANZECC (1992) Australian water quality guidelines for fresh & marine waters @http://www.environment.gov.au/about/councils/anzecc/index.html.
Apostol, K.G. and Zwiazek, J.J. (2004) Boron and water uptake in jack pine (Pinus banksiana) seedlings. Environmental and Experimental Botany 51(2), 145-153. Ashok, M., Kalkura, S., Sundaram, N. and Arivuoli, D. (2007) Growth and characterization of hydroxyapatite crystals by hydrothermal method. Journal of Materials Science: Materials in Medicine 18(5), 895-898. Bao, L., Xu, Z.H., Li, R. and Li, X. (2010) Catalyst-free synthesis and structural and mechanical characterization of single crystalline Ca2B2O5∙H2O nanobelts and stacking faulted Ca2B2O5 nanogrooves. Nano Letter 10(1), 255-262. Barheine, S., Hayakawa, S., Osaka, A. and Jaeger, C. (2009) Surface, interface, and bulk structure of borate containing apatitic biomaterials. Chemistry of Materials 21(14), 3102-3109. Bloesch, P.M., Bell, L.C. and Hughes, J.D. (1987) Adsorption and desorption of boron by goethite. Australian Journal of Soil Research 25(4), 377 - 390. Bolanos, L., Lukaszewski, K., Bonilla, I. and Blevins, D. (2004) Why boron? Plant Physiology and Biochemistry 42(11), 907-912. Bykov, Y.V., Rybakov, K.I. and Semenov, V.E. (2001) High-temperature microwave processing of materials. Journal of Physics D: Applied Physics 34, 55-75. Byrappa, K. and Yoshimura, M. (2001) Handbook of hydrothermal technology, Noyes/William Andrew. Cao, C.E., Wang, Y. J., Zheng, N.Z. , Xiong, C.H., Shen, H.R. (2005) Study on the synthetic process of calcium borate. Key Engineering Materials 280-283, 605-608. Chen, C.L., Lo, S.L., Kuan, W.H. and Hsieh, C.H. (2009) Stabilization of copper-contaminated sludge using the microwave sintering. Journal of Hazardous Materials 168(2-3), 857-861. Chong, M.F., Lee, K.P., Chieng, H.J. and Syazwani Binti Ramli, I.I. (2009) Removal of boron from ceramic industry wastewater by adsorption–flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Research 43(13), 3326-3334. Cyril, J. (2007) Seawater desalination: Boron removal by ion exchange technology. Desalination 205(1-3), 47-52. Davis, S.M., Drake, K.D. and Maier, K.J. (2002) Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere 48(6), 615-620. Del-Campo Marin, C.M. and Oron, G. (2007) Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters. Water Research 41(20), 4579-4584. del Mar de la Fuente Garcia-Soto, M. and Camacho, E.M. (2006) Boron removal by means of adsorption with magnesium oxide. Separation and Purification Technology 48(1), 36-44. Dionisiou, N., Matsi, T. and Misopolinos, N.D. (2006) Use of magnesia for boron removal from irrigation water. Journal of Environmental Quality. 35, 2222-2228. Driessens, F.C.M. and Verbeeck, R.M.H. (1990), pp. 37-59, CRC Press, Boca Raton, FL. Dydo, P., Turek, M., Ciba, J., Trojanowska, J. and Kluczka, J. (2005) Boron removal from landfill leachate by means of nanofiltration and reverse osmosis. Desalination 185(1-3), 131-137. Egan, E.P., Wakefield, Z.T. and Elmore, K.L. (1951) Low-temperature heat capacity and entropy of hydroxyapatite. Journal of the American Chemical Society 73(12), 5579-5580. Essington, M.E., Foss, J.E. and Roh, Y. (2004) The soil mineralogy of lead at horace's villa. Soil Science Society of America Journal 68, 979-993. EU (1998) The drinking water directive (DWD), Council Directive 98/83/EC. EU (ed), European union. Fava, L.R.G. and Saunders, W.P. (1999) Calcium hydroxide pastes: Classification and clinical indications. International Endodontic Journal 32, 257-282. Friedman, H., Bernstein, N., Bruner, M., Rot, I., Ben-Noon, Z., Zuriel, A., Zuriel, R., Finkelstein, S., Umiel, N. and Hagiladi, A. (2007) Application of secondary-treated effluents for cultivation of sunflower (Helianthus annuus L.) and celosia (Celosia argentea L.) as cut flowers. Scientia Horticulturae 115(1), 62-69. Glandon, R.P. and McNabb, C.D. (1978) The uptake of boron by Lemna minor. Aquatic Botany 4, 53-64. Gopinath, C.S., Hegde, S.G., Ramaswamy, A.V. and Mahapatra, S. (2002) Photoemission studies of polymorphic CaCO3 materials. Materials Research Bulletin 37(7), 1323-1332. Haque, K.E. (1999) Microwave energy for mineral treatment processes-a brief review. International Journal of Mineral Processing 57(1), 1-24. Health-Canada (1990) Water Quality. Health Canada department.@ http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/boron-bore/index-eng.php. Hemming, N.G. and Hanson, G.N. (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta 56(1), 537-543. Inada, M., Tsujimoto, H., Eguchi, Y., Enomoto, N. and Hojo, J. (2005) Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel 84(12-13), 1482-1486. Itakura, T., Sasai, R. and Itoh, H. (2005) Precipitation recovery of boron from wastewater by hydrothermal mineralization. Water Research 39(12), 2543-2548. Jamis, P., Muhr, H. and Plasari, E. (2002) Boron removal from waste solutions using a multiophase co-precipitation process. Chemical Engineering Transactions 1, 975-981. Janney, M.A., Kimrey, H.D., Schmidt, M.A. and Kiggans, J.O. (1991) Grain growth in microwave-annealed alumina. Journal of American Ceramic Society 74(7), 1675-1681. Janney, M.A., Calhoun, C.L. and Kimrey, H.D. (1992) Microwave sintering of solid oxide fuel cell materials: I, zirconia-8 mol% yttria. Journal of the American Ceramic Society 75(2), 341-346. Jinawath, S., Pongkao, D., Suchanek, W. and Yoshimura, M. (2001) Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. International Journal of Inorganic Materials 3(7), 997-1001. Jinawath, S., Pongkao, D. and Yoshimura, M. (2002) Hydrothermal synthesis of hydroxyapatite from natural source. Journal of Materials Science: Materials in Medicine 13(5), 491-494. Kang, Y., Yin, G., Liu, Y., Huang, Z., Yao, Y., Liao, X. and Liao, L. (2008) The precipitation of three Ca-P phase whiskers from an acid solution throughhydrolysis of urea. Journal of Ceramic Processing Research 9, 162-166. Katz, J.D. (1992) Microwave sintering of ceramics. Annual Review of Materials Science 22, 153-170. Kentjono, L., Liu, J.C., Chang, W.C. and Irawan, C. (2010) Removal of boron and iodine from optoelectronic wastewater using Mg–Al (NO3) layered double hydroxide. Desalination 262(1-3), 280-283. Kingman, S.W. and Rowson, N.A. (1998) Microwave treatment of minerals - a review. Minerals Engineering 11(11), 1081-1087. Kirschvink, J.L. (1996) Microwave absorption by magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics 17, 187-194. Koltuniewicz, A.B., Witek, A. and Bezak, K. (2004) Efficiency of membrane-sorption integrated processes. Journal of Membrane Science 239(1), 129-141. Komarneni, S. and Menon, V.C. (1996) Hydrothermal and microwave-hydrothermal preparation of silica gels. Materials Letters 27(6), 313-315. Komarneni, S., Roy, R. and Li, Q.H. (1992) Microwave-hydrothermal synthesis of ceramic powders. Materials Research Bulletin 27(12), 1393-1405. Kose, T.E. and Ozturk, N. (2008) Boron removal from aqueous solutions by ion-exchange resin: Column sorption–elution studies. Journal of Hazardous Materials 152(2), 744-749. Koutsopoulos, S. (2002) Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research 62(4), 600-612. Ku, W.W. and Chapin, R.E. (1994) Mechanism of the testicular toxicity of boric acid in rats: In vivo and In vitro studies. Environ Health Perspect 102, 99-105. Kusachi, I., Takechi, Y. (1998) Parasibirskite, a new mineral from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine 62(4), 521-525. Kwon, H.B., Lee, C.W., Jun, B.S., Yun, J.d., Weon, S.Y. and Koopman, B. (2004) Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling 41(1), 75-82. Lee, S.W. and Choi, C.S. (2007) The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. Micron 38(1), 58-64. Li, Z., Sun, Q., Liu, M., Wen, Y. and Liu, H. (2009) Preparation of activated magnesium oide defluorination adsorbents by microwave radiation method. Inorganic Chemicals Industry 41(11), 11-14. Liu, R., Ma, W., Jia, C.Y., Wang, L. and Li, H.Y. (2007) Effect of pH on biosorption of boron onto cotton cellulose. Desalination 207(1-3), 257-267. Liu, Y., Hou, D. and Wang, G. (2004a) A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Materials Chemistry and Physics 86(1), 69-73. Liu, Z.H., Zuo, C.F. and Li, S.Y. (2004b) Synthesis and thermochemistry of 2CaO•B2O3•H2O. Thermochimica Acta 424(1-2), 59-62. Manso, M., Langlet, M., Jimenez, C. and Martinez-Duart, J.M. (2002) Microstructural study of aerosol-gel derived hydroxyapatite coatings. Biomolecular Engineering 19(2-6), 63-66. Massie, H.R. (1994) Effect of dietary boron on the aging process. Environ Health Perspect 102, 45-48. Mastromatteo, E. and Sullivan, F. (1994) Summary: International symposium on the health effects of boron and its compounds. Environmental Health Perspective 102(Suppl 7), 139-141. Mesmer, R.E. and Iran, R.R. (1963) Changes in enthalpy during the heating of CaHPO4(H2O)2. Journal of Chemical and Engineering Data 8, 530-532. Mijović, J. and Wijaya, J. (1990) Review of cure of polymers and composites by microwave energy. Polymer Composites 11(3), 184-191. MOE(Japanese Minister of the Environment) (1997) Environmental Quality Standards for Water. MOE(Japanese Minister of the Environment) (2007) Uniform national effluent standards. Murray, F.J. (1995) A human health risk assessment of boron (boric acid and borax) in drinking Water. Regulatory Toxicology and Pharmacology 22, 221-230. National Research Center (1994) Microwave processing of materials, Commission on Engineering and Technical Systems. National Academy Press (USA), 29-35. NEA(National Environment Agency of Singapore) (2002) Allowable limits for trade effluent discharge to sewer/wartercourse/controlled watercourse. Okay, O., Guclu, H., Soner, E. and Balkas, T. (1985) Boron pollution in the Simav River, Turkey and various methods of boron removal. Water Research 19(7), 857-862. Onal, G. and Burat, F. (2008) Boron mining and processing in Turkey. Gospodarka Surowcami Mineralnymi 24, 51-60. Oo, M.H. and Ong, S.L. (2010) Implication of zeta potential at different salinities on boron removal by RO membranes. Journal of Membrane Science 352(1-2), 1-6. Ou, H.H., Liao, C.H., Liou, Y.H., Hong, J.H. and Lo, S.L. (2008) Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes. Environmental Science & Technology 42(12), 4507-4512 Ozin, G.A., Varaksa, N., Coombs, N., E. Davies, J., Perovic, D.D. and Ziliox, M. (1997) Bone mimetics: A composite of hydroxyapatite and calcium dodecylphosphate lamellar phase. Journal of Materials Chemistry 7(8), 1601-1607. Ozturk, N. and Kavak, D. (2005) Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. Journal of Hazardous Materials 127(1-3), 81-88. Park, W.H. and Polprasert, C. (2008a) Phosphorus adsorption characteristics of oyster shells and alum sludge and their application for nutrient control in constructed wetland system. Journal of Environmental Science and Health, 43, 511-517. Park, W.H. and Polprasert, C. (2008b) Roles of oyster shells in an integrated constructed wetland system designed for P removal. Ecological Engineering 34(1), 50-56. Parks, G.A. (1967) Aqueous surface chemistry of oxides and complex oxide minerals, pp. 121–160, American Chemical Society Parks, J.L. and Edwards, M. (2005) Boron in the Environment. Critical Reviews in Environmental Science and Technology 35(2), 81-114. Park, S.E., Kim, D.S., Chang, J.S. and Kim, W.Y. (1998) Synthesis of MCM-41 using microwave heating with ethylene glycol. Catalysis Today 44(1-4), 301-308. Peak, D., Luther Iii, G.W. and Sparks, D.L. (2003) ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochimica et Cosmochimica Acta 67(14), 2551-2560. Perić, J., Vučak, M., Krstulović, R., Brečević, L. and Kralj, D. (1996) Phase transformation of calcium carbonate polymorphs. Thermochimica Acta 277(0), 175-186. Pert, E., Carmel, Y., Birnboim, A., Olorunyolemi, T., Gershon, D., Calame, J., Lloyd, I.K. and Wilson, O.C. (2001) Temperature measurements during microwave processing: The significance of thermocouple effects. Journal of the American Ceramic Society 84(9), 1981-1986. Polat, H., Vengosh, A., Pankratov, I. and Polat, M. (2004) A new methodology for removal of boron from water by coal and fly ash. Desalination 164(2), 173-188. Pramanik, S., Agarwaly, A.K. and Rai, K.N. (2005) Development of high strength hydroxyapatite for hard tissue replacement. Trends in Biomaterials & Artificial Organs 19(1), 46-51. Redondo, J., Busch, M. and De Witte, J.-P. (2003) Boron removal from seawater using FILMTECTM high rejection SWRO membranes. Desalination 156(1-3), 229-238. Reichert, J. and Binner, J.G.P. (1996) An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. Journal of Materials Science 31(5), 1231-1241. Robertson, J. (2004) High dielectric constant oxides. The European Physical Journal Applied Physics 28, 265-291. Robinson, B.H., Green, S.R., Chancerel, B., Mills, T.M. and Clothier, B.E. (2007) Poplar for the phytomanagement of boron contaminated sites. Environmental Pollution 150(2), 225-233. Roussy, G., Mercier, A., Thiebaut, J. and Vaubourg, J. (1985) Temperature runaway of microwave heated materials: Study and control. Journal of Microwave Power, 47-51. Rybakov, K.I., Semenov, V.E., Egorov, S.V., Eremeev, A.G. and Plotnikov, I.V. (2006) Microwave heating of conductive powder materials. Journal of Applied Physics 99, 023506. Sabarudin, A., Oshita, K., Oshima, M. and Motomizu, S. (2005) Synthesis of cross-linked chitosan possessing N-methyl-d-glucamine moiety (CCTS-NMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES. Talanta 66(1), 136-144. Saltiel, C. and Datta, A.K. (1999) Heat and mass transfer in microwave processing. Advances in Heat Transfer Volume 33, 1-94. Schafer, U.L. (1968) Synthese und rontgenographische untersuchung der borate 3CaO B2O3, 2CaO B2O3 und 2CaO B2O3 H2O. Neues Jahrb. Mineral. Mh., 75-80. Seo, D.C., Cho, J.S., Lee, H.J. and Heo, J.S. (2005) Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research 39(11), 2445-2457. Shih, W.J., Wang, M.C. and Hon, M.H. (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. Journal of Crystal Growth 275(1-2), 2339-2344. Shorrocks, V.M. (1997) The occurrence and correction of boron deficiency. Plant and Soil 193, 121-148. Simonnot, M.-O., Castel, C., Nicola, M., Rosin, C., Sardin, M. and Jauffret, H. (2000) Boron removal from drinking water with a boron selective resin: Is the treatment really selective? Water Research 34(1), 109-116. Steefel, C.I. and Van Cappellen, P. (1990) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochimica et Cosmochimica Acta 54(10), 2657-2677. Su, C. and Suarez, D.L. (1995) Coordination of adsorbed boron: a FTIR spectroscopic study. Environmental Science and Technology 29, 302-311. Suchanek, W.L. and Riman, R.E. (2006) Hydrothermal synthesis of advance ceramic powders. Advances in Sicence and Technology 45, 184-193 Tanaka, M. and Sato, M. (2007) Microwave heating of water, ice, and saline solution: Molecular dynamics study. Journal of Chemical Physics 126, 034509. Taniguchi, M., Fusaoka, Y., Nishikawa, T. and Kurihara, M. (2004) Boron removal in RO seawater desalination. Desalination 167, 419-426. Thamaraiselvi, T.V., Prabakaran, K. and Rajeswari, S. (2006) Synthesis of hydroxyapatite that mimic bone minerology. Trends in Biomaterials & Artificial Organs 19(2), 81-83. Tolaimate, A., Desbrieres, J., Rhazi, M. and Alagui, A. (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26), 7939-7952. Tran, H.N. and Mostaghimi, J. (1996) Microwave heating device for lime and calcining, Tran industrial research Inc., Canada. Trumbo, P., Yates, A.A., Schlicker, S. and Poos, M. (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association 101(3), 294-301. UNFAO(Food and Agriculture Organization of the United Nations) (2002) The environment protection act. USEPA (2008) Summary document from the health advisory for boron and compounds. van der Houwen, J.A.M., Cressey, G., Cressey, B.A. and Valsami-Jones, E. (2003) The effect of organic ligands on the crystallinity of calcium phosphate. Journal of Crystal Growth 249(3-4), 572-583. WHO(World Health Organization) (2006) Guidelines for drinking-water quality incorporating first addendum. Xu, F., Goldbach, H.E., Brown, P.H., Bell, R.W., Fujiwara, T., Hunt, C.D., Goldberg, S. and Shi, L. (2007) Advances in plant and animal boron nutrition: Proceedings of the 3rd International Symposium on All Aspects of Plant and Animal Boron Nutrition, Springer. Yilmaz, A.E., Boncukcuoglu, R., Yilmaz, M.T. and Kocakerim, M.M. (2005) Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor. Journal of Hazardous Materials 117(2-3), 221-226. Yoon, G.L., Kim, B.T., Kim, B.O. and Han, S.H. (2003) Chemical-mechanical characteristics of crushed oyster-shell. Waste Management 23(9), 825-834. Zhu, W., Xiang, L., He, T. and Zhu, S. (2006) Hydrothermal synthesis and characterization of magnesium borate hydroxide nanowhiskers. Chemistry Letters 35, 1158-1159. Zorin, Y.A., Makarova, V.V., Bychkov, V.Z., Kutukov, A.S., Smirnov, E.I., Fedulov, S.A. and Shvorneva, L.I. (1981) Replacing boric acid with calcium borate in the melting of a borosilicate charge. Glass and Ceramics 38(9), 450-453. 黃培安、吳佩蒨與吳純衡,2006,貝殼機能性成分之利用,水試專刊(13),19-32,農委會水產試驗所。 黃培安與吳純衡,2006,牡蠣殼萃取物在抗氧化及抑制酪胺酸酶活性之研究,水試專刊(16),1-3,農委會水產試驗所。 黃培安與吳純衡,2007,殼本萬利-開啟牡蠣殼中的寶藏,農政與農情(176),農委會水產試驗所。 鄭長義,1997,肉雞與蛋雞之營養需要(下),10-27,飼料營養雜誌社。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66617 | - |
| dc.description.abstract | 硼化合物廣泛應用於陶瓷器皿、玻璃製品及液晶面版(LCD)製程中,同時亦排放高濃度之含硼工業廢水。根據相關文獻指出,硼為作物與人體之所需微量元素,然而過量硼對於動植物皆有一定毒害,因此各國亦限制排放廢水之硼濃度,其中台灣之放流水標準即要求水中硼濃度應小於1 mg/L,相對其他國家之標準較嚴格許多。因此,為因應高濃度含硼廢水處理以達嚴苛放流標準之迫切問題,本研究即針對此高濃度含硼水進行處理方法之發展。研究中主要由微波水熱礦化法為主軸,而三種不同藥劑添加方式為支架,以構成整體研究架構。
於微波液相硼回收實驗中,利用礦化作用產生結晶沈澱以回收水中硼,且於不同添加條件下皆具高處理效率。在單純添加氫氧化鈣條件下(Ca(OH)2 alone),反應10分鐘後達90%回收效率,且反應後沈澱物於XRD分析中,觀察到偏硼酸鈣結晶之衍射峰。於氫氧化鈣與磷酸添加條件下(P addition),於10分鐘內達99%處理效率,並可於沈澱物之XRD分析結果辨別出數種磷酸鈣結晶物。此外,分別測試三種預處理貝殼應用於此硼回收方法,實驗結果顯示,預處理牡蠣殼之硼處理效率為最佳,可於10分鐘內達到95%,而於預處理文蛤與蜆殼條件下,與單純添加氫氧化鈣條件相似,僅達到90%之硼處理效率。而在貝殼預處理實驗中,利用複合微波加熱方式轉化生物貝殼材料,並探討不同材質作為微波吸收介質之技術可行性。實驗結果顯示,相較於其他三種微波吸收材料,氧化銅具有較快之升溫速度。而搭配二氧化鋯使用時,於CuO:ZrO2 = 1: 1之比例及600W微波功率20分鐘下,除可降低此複合微波介質之碎裂情形,可轉換大部分碳酸鈣為氧化鈣,以供硼處理所需添加藥劑使用。 根據本研究結果,複合微波於貝殼之前處理為可行之技術,然而拓展至實際應用尺寸仍須加以修正與改進。而無論於使用商用藥劑之添加條件下,抑或於預處理貝殼添加條件下,水中硼回收皆具有90%以上之回收效率。而此方法於應用時,亦需考慮水體之酸鹼值、硼初始濃度以及其他干擾物質之量以做出適當調整,並達最佳硼回收效果。 | zh_TW |
| dc.description.abstract | Boron compounds are widely-used raw materials in industries, such as ceramic, glass and liquid crystal display (LCD) process. Wastewaters from these processes often contain elevated boron concentrations, and it in aqueous systems may be harmful to human and plants.
In this study, boron recovery, calcium hydroxide (Ca(OH)2 alone), Ca(OH)2 with phosphoric acid (H3PO4) addition (P addition) and pretreated shells were used to remove and recover boron from water using hydrothermal methods. For the case of Ca(OH)2 alone and MW(Microwave) hydrothermal method, experimental results showed that boron recovery efficiency achieved 90% within 10 min, and crystals of Ca2B2O5•H2O were found in the precipitates as indicated by the XRD analysis. For the case of P addition and the MW hydrothermal method, boron recovery efficiency reached 99% within 10 min, and calcium phosphate species (CaHPO4.H2O, CaHPO4 and Ca10(PO4)6(OH)2) were formed. For the case of pretreated shell, three types of crushed shells (oyster, hard clam and freshwater clam) were pretreated and then reused as mineralizers to remove and recover the boron from concentrated wastewater by using the MW hydrothermal method. The oyster shells pretreated by heat performed better than heated hard clam and freshwater clam shells, and the boron recovery efficiency reached around 95% within 10 min of reaction time. In order to use bio-shell as substitute of calcium hydroxide, shell pre-treated method was also considered in this study. Oyster shells were transformed by hybrid microwave heating method, and the effect of different microwave absorption materials were also investigated. Comparing with three other microwave absorption materials, CuO performed a rapider rate of heating. The temperature of CuO reached 950 oC after 3 min, and CuO-ZrO2 (1:1) microwave absorbent might have less degree of disruption. In addition, oyster shells were almost decomposed and became CaO with CuO-ZrO2 (1:1) microwave absorbent at power of 600W after 20 min of reaction time. According to the experimental results, pretreatment of shells by composite microwave heating is a feasible method. However, some modifications and improvements should be done for practical use. In addition, an effective method for boron recovery by microwave with commercial reagents or pretreated shells was found. There are several factors that should be considered, such as pH value, initial boron concentration and interference compound before adopting this method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:46:36Z (GMT). No. of bitstreams: 1 ntu-100-D96541009-1.pdf: 13046131 bytes, checksum: 76db29fc22427c723d1092cbf1031eed (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii 英文摘要 v 第一章 前言 1 1.1 研究緣起 1 1.2 研究概念 2 1.3 研究目的 3 第二章 文獻回顧 4 2.1 硼之分佈與特性 4 2.2 含硼廢水來源 12 2.3 水中硼處理技術 14 2.3.1 薄膜處理法 16 2.3.2 離子交換法 18 2.3.3 吸附法 20 2.3.4 水熱礦化法 22 2.4 牡蠣殼之特性與應用 26 2.4.1 牡蠣殼之特性 26 2.4.2 牡蠣殼之應用 28 2.5 微波加熱技術 30 2.5.1 微波加熱原理與特性 30 2.5.2 微波加熱中熱失控現象 37 2.5.3 微波場溫度量測 40 2.5.4 微波加熱之應用 42 第三章 研究架構與方法 44 3.1 研究架構 44 3.2 材料與方法 46 3.2.1 實驗材料與設備 46 3.2.2 實驗方法與流程 49 3.2.3 實驗分析設備 53 第四章 研究結果與討論 55 4.1 氫氧化鈣添加試驗 55 4.1.1 反應時間之影響 55 4.1.2 添加量之影響 58 4.1.3 反應溫度之影響 61 4.1.4 水中氫離子濃度之影響 63 4.1.5 其他陰離子之影響 64 4.1.6 反應機制討論 65 4.2 氫氧化鈣與磷酸添加試驗 71 4.2.1 反應時間之影響 71 4.2.2 氫氧化鈣與磷酸添加比例之影響 74 4.2.3 其他陰離子之影響 75 4.2.4 反應機制討論 76 4.3 貝殼預處理試驗 83 4.3.1 傳統加熱法 83 4.3.2 微波加熱法 91 4.4 預處理貝殼添加試驗 107 4.4.1 不同預處理反應氣氛之影響 107 4.4.2 預處理貝殼粒徑之影響 109 4.4.3 硼初始濃度之影響 110 4.4.4 反應時間之影響 113 4.4.5 添加劑量之影響 116 4.4.6 反應機制討論 118 4.5 硼回收初步評估 122 第五章 結論與建議 124 5.1 結論 124 5.2 建議 126 參考文獻 127 附錄 138 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微波輻射 | zh_TW |
| dc.subject | 貝殼再利用 | zh_TW |
| dc.subject | 硼處理 | zh_TW |
| dc.subject | 硼回收 | zh_TW |
| dc.subject | 礦化作用 | zh_TW |
| dc.subject | 水熱法 | zh_TW |
| dc.subject | Mineralization | en |
| dc.subject | Shell reuse | en |
| dc.subject | Microwave radiation | en |
| dc.subject | Hydrothermal method | en |
| dc.subject | Boron treatment | en |
| dc.subject | Boron recovery | en |
| dc.title | 以微波水熱礦化法處理水中高濃度硼之研究 | zh_TW |
| dc.title | Treatment of Concentrated Boron from Water Using Microwave Hydrothermal Mineralization Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李公哲(Kung-Cheh Li),高志明(Chih-Ming Kao),康世芳(Shyh-Fang kang),曾迪華(Dyi-Hwa Tseng) | |
| dc.subject.keyword | 微波輻射,水熱法,硼處理,硼回收,礦化作用,貝殼再利用, | zh_TW |
| dc.subject.keyword | Microwave radiation,Hydrothermal method,Boron treatment,Boron recovery,Mineralization,Shell reuse, | en |
| dc.relation.page | 158 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-12-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 12.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
