Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6660
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張靜文(Ching-Wen Chang)
dc.contributor.authorYa-Ting Hsuen
dc.contributor.author許雅婷zh_TW
dc.date.accessioned2021-05-17T09:15:54Z-
dc.date.available2018-03-04
dc.date.available2021-05-17T09:15:54Z-
dc.date.copyright2013-03-04
dc.date.issued2012
dc.date.submitted2012-11-27
dc.identifier.citationAhmet Pinar, MD; Julio A. Ramirez, MD; Laura L. Schindler, MT(ASCP); Richard. (2002). The Use of Heteroduplex Analysis of Polymerase Chain Reaction Products toSupport the Possible Transmission of Legionella pneumophila From a Malfunctioning Automobile Air Conditioner. INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 23(3).
Asmi, E., Antola, M., Yli-Tuomi, T., Jantunen, M., Aarnio, P., Makela, T., . . . Hameri, K. (2009). Driver and passenger exposure to aerosol particles in buses and trams in Helsinki, Finland. Sci Total Environ, 407(8), 2860-2867. doi: 10.1016/j.scitotenv.2009.01.004
Bargellini, Annalisa, Marchesi, Isabella, Righi, Elena, Ferrari, Angela, Cencetti, Stefano, Borella, Paola, & Rovesti, Sergio. (2011). Parameters predictive of Legionella contamination in hot water systems: Association with trace elements and heterotrophic plate counts. Water Research, 45(6), 2315-2321. doi: 10.1016/j.watres.2011.01.009
Blatny JM, Reif BA, Skogan G, Andreassen O, Hoiby EA, Ask E, Waagen V, Aanonsen D, Aaberge IS, Caugant DA. (2008). Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant. Environ Sci Technol. .
Bonetta, S., Bonetta, S., Ferretti, E., Balocco, F., & Carraro, E. (2010). Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods. J Appl Microbiol, 108(5), 1576-1583. doi: 10.1111/j.1365-2672.2009.04553.x
Borella, P., Montagna, M. T., Stampi, S., Stancanelli, G., Romano-Spica, V., Triassi, M., . . . Boccia, S. (2005). Legionella Contamination in Hot Water of Italian Hotels. Applied and Environmental Microbiology, 71(10), 5805-5813. doi: 10.1128/aem.71.10.5805-5813.2005
Brown, A., Vickers, R. M., Elder, E. M., Lema, M., & Garrity, G. M. (1982). Plasmid and surface antigen markers of endemic and epidemic Legionella pneumophila strains. J Clin Microbiol, 16(2), 230-235.
Carratala, J., Gudiol, F., Pallares, R., Dorca, J., Verdaguer, R., Ariza, J., & Manresa, F. (1994). Risk factors for nosocomial Legionella pneumophila pneumonia. Am J Respir Crit Care Med, 149(3 Pt 1), 625-629.
Che, D., Campese, C., Santa-Olalla, P., Jacquier, G., Bitar, D., Bernillon, P., & Desenclos, J. C. (2008). Sporadic community-acquired Legionnaires' disease in France: a 2-year national matched case-control study. Epidemiol Infect, 136(12), 1684-1690. doi: 10.1017/S0950268807000283
Chen, N. T., & Chang, C. W. (2010). Rapid quantification of viable Legionellae in water and biofilm using ethidium monoazide coupled with real-time quantitative PCR. J Appl Microbiol, 109(2), 623-634. doi: 10.1111/j.1365-2672.2010.04678.x
D Che, B Decludt, C Campese, and J Desenclos. (2003). Sporadic cases of community acquired legionnaires' disease: an ecological study to identify new sources of contamination. J Epidemiol Community Health, 57(6), 466–469.
Deloge-Abarkan M, Ha TL, Robine E, Zmirou-Navier D, Mathieu L. (2007). Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization. J Environ Monit., 9(1).
Den Boer, J. W., Nijhof, J., & Friesema, I. (2006). Risk factors for sporadic community-acquired Legionnaires' disease. A 3-year national case-control study. Public Health, 120(6), 566-571. doi: 10.1016/j.puhe.2006.03.009
Diederen, B. M. (2008). Legionella spp. and Legionnaires' disease. J Infect, 56(1), 1-12. doi: 10.1016/j.jinf.2007.09.010
Dutil, S., Veillette, M., Meriaux, A., Lazure, L., Barbeau, J., & Duchaine, C. (2007). Aerosolization of mycobacteria and Legionellae during dental treatment: low exposure despite dental unit contamination. Environ Microbiol, 9(11), 2836-2843. doi: 10.1111/j.1462-2920.2007.01395.x
Edagawa, A., Kimura, A., Doi, H., Tanaka, H., Tomioka, K., Sakabe, K., . . . Suzuki, Y. (2008). Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J Appl Microbiol, 105(6), 2104-2114. doi: 10.1111/j.1365-2672.2008.03932.x
Fields, B. S. (1996). The molecular ecology of Legionellae. Trends Microbiol, 4(7), 286-290.
Fujimura, S., Oka, T., Tooi, O., Meguro, M., Chiba, M., Kawamura, M., . . . Watanabe, A. (2006). Detection of Legionella pneumophila serogroup 7 strain from bathwater samples in a Japanese hospital. J Infect Chemother, 12(2), 105-108. doi: 10.1007/s10156-005-0428-5
Gilmour, M. W., Bernard, K., Tracz, D. M., Olson, A. B., Corbett, C. R., Burdz, T., . . . Berry, J. D. (2007). Molecular typing of a Legionella pneumophila outbreak in Ontario, Canada. J Med Microbiol, 56(Pt 3), 336-341. doi: 10.1099/jmm.0.46738-0
Guillemet, T. A., Levesque, B., Gauvin, D., Brousseau, N., Giroux, J. P., & Cantin, P. (2010). Assessment of real-time PCR for quantification of Legionella spp. in spa water. Letters in Applied Microbiology, 51(6), 639-644. doi: 10.1111/j.1472-765X.2010.02947.x
Janet E. Stout, Ph.D., and Victor L. Yu, M.D. (1997). Legionellosis. N Engl J Med, 682-687.
Kusnetsov., Jaana m., Martikainen., Pertti j., & JouSimies-somer., Hannele r. (1993). PHYSICAL, CHEMICAL AND MICROBIOLOGICAL WATER CHARACTERISTICS ASSOCIATED WITH THE OCCURRENCE OF LEGIONELLA IN COOLING TOWER SYSTEMS. War. Res., 27(1).
Kusnetsov., Jaana m., Martikainen., Pertti j., & JouSimies-somer., Hannele r. (2003). Colonization of hospitalwater systems by Legionellae,
mycobacteria and other heterotrophic bacteria potentially
hazardous to risk group patients. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 111.
Lasheras, A., Boulestreau, H., Rogues, A. M., Ohayon-Courtes, C., Labadie, J. C., & Gachie, J. P. (2006). Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am J Infect Control, 34(8), 520-525. doi: 10.1016/j.ajic.2006.03.007
Leoni, E., De Luca, G., Legnani, P. P., Sacchetti, R., Stampi, S., & Zanetti, F. (2005). Legionella waterline colonization: detection of Legionella species in domestic, hotel and hospital hot water systems. J Appl Microbiol, 98(2), 373-379. doi: 10.1111/j.1365-2672.2004.02458.x
Lin, Y. S., Stout, J. E., Yu, V. L., & Vidic, R. D. (1998). Disinfection of water distribution systems for Legionella. Semin Respir Infect, 13(2), 147-159.
M Bauer, L Mathieu, M Deloge-Abarkan. (2008). Legionella bacteria in shower aerosols increase the risk of Pontiac fever among older people in retirement homes.
Marston, B. J., Lipman, H. B., & Breiman, R. F. (1994). Surveillance for Legionnaires' disease. Risk factors for morbidity and mortality. Arch Intern Med, 154(21), 2417-2422.
Muder, R. R., Yu, V. L., & Woo, A. H. (1986). Mode of transmission of Legionella pneumophila. A critical review. Arch Intern Med, 146(8), 1607-1612.
Nguyen, T. M., Ilef, D., Jarraud, S., Rouil, L., Campese, C., Che, D., . . . Desenclos, J. C. (2006). A community-wide outbreak of legionnaires disease linked to industrial cooling towers--how far can contaminated aerosols spread? J Infect Dis, 193(1), 102-111. doi: 10.1086/498575
Ohno A, Kato N, Yamada K, Yamaguchi K. (2003). Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. Appl Environ Microbiol.
Patterson, W. J., Hay, J., Seal, D. V., & McLuckie, J. C. (1997). Colonization of transplant unit water supplies with Legionella and protozoa: precautions required to reduce the risk of legionellosis. J Hosp Infect, 37(1), 7-17.
Polat Y, Ergin C, Kaleli I, Pinar A. (2007). Investigation of Legionella pneumophila seropositivity in the professional long distance drivers as a risky occupation. Mikrobiyoloji Bulteni 41(2), 211-217.
Pryor, M., Springthorpe, S., Riffard, S., Brooks, T., Huo, Y., Davis, G., & Sattar, S. A. (2004). Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci Technol, 50(1), 83-90.
Roig, J., & Rello, J. (2003). Legionnaires' disease: a rational approach to therapy. J Antimicrob Chemother, 51(5), 1119-1129. doi: 10.1093/jac/dkg191
Rose, Laura J., Simmons, Robert B., Crow, S. A., & Ahearn, Donald G. (2000). Volatile Organic Compounds Associated with Microbial Growth in Automobile Air Conditioning Systems. Current Microbiology, 41(3), 206-209. doi: 10.1007/s002840010120
Sabria, M., & Yu, V. L. (2002). Hospital-acquired legionellosis: solutions for a preventable infection. Lancet Infect Dis, 2(6), 368-373.
Sakamoto, R., Ohno, A. (2009). Legionella pneumophila in rainwater on roads. Emerg Infect Dis, 15(8), 1295-1297. doi: 10.3201/eid1508.090317
Simmons, R. B., Noble, J. A., Rose, L., Price, D. L., Crow, S. A., & Ahearn, D. G. (1997). Fungal colonization of automobile air conditioning systems. Journal of Industrial Microbiology & Biotechnology, 19(2), 150-153. doi: DOI 10.1038/sj.jim.2900451
Simmons, R. B., Rose, L. J., Crow, S. A., & Ahearn, D. G. (1999). The occurrence and persistence of mixed biofilms in automobile air conditioning systems. Curr Microbiol, 39(3), 141-145.
Sopena, N., Sabria, M., Pedro-Botet, M. L., Manterola, J. M., Matas, L., Dominguez, J., . . . Foz, M. (1999). Prospective study of community-acquired pneumonia of bacterial etiology in adults. Eur J Clin Microbiol Infect Dis, 18(12), 852-858.
Stout, J. E., Yu, V. L., & Muraca, P. (1985). Isolation of Legionella pneumophila from the cold water of hospital ice machines: implications for origin and transmission of the organism. Infect Control, 6(4), 141-146.
Valster, R. M., Wullings, B. A., van den Berg, R., & van der Kooij, D. (2011). Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol, 77(20), 7321-7328. doi: 10.1128/AEM.05575-11
Vonberg, R. P., Gastmeier, P., Kenneweg, B., Holdack-Janssen, H., Sohr, D., & Chaberny, I. F. (2010). The microbiological quality of air improves when using air conditioning systems in cars. BMC Infect Dis, 10, 146. doi: 10.1186/1471-2334-10-146
Wallensten, A., Oliver, I., Ricketts, K., Kafatos, G., Stuart, J. M., & Joseph, C. (2010). Windscreen wiper fluid without added screenwash in motor vehicles: a newly identified risk factor for Legionnaires' disease. Eur J Epidemiol, 25(9), 661-665. doi: 10.1007/s10654-010-9471-3
Zanetti F, Stampi S, De Luca G, Fateh-Moghadam P, Antonietta M, Sabattini B, Checchi L. (2000). Water characteristics associated with the occurrence of Legionella pneumophila in dental units. Eur J Oral Sci., 108.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6660-
dc.description.abstract過去文獻指出職業駕駛或長時間開車者有較高的退伍軍人病感染風險,而暴露來源可能為車體雨刷水系統遭退伍軍人菌污染,且添加雨刷精之車輛使用者的感染風險顯著較低,然目前缺少詳細的暴露調查數據。研究目的除了評估及定量車輛中之雨刷水其退伍軍人菌污染狀況,另收集相關影響因子,以探討「水質條件」、「車體資訊及用車習慣」和「雨刷水操作維護」如何影響雨刷水中退伍軍人菌檢出及孳生。本研究於台北大都會地區以立意採樣方式,採集民眾自用車及計程車中的雨刷水桶內及其雨刷水出水口的水樣,除進行培養法分析外,並以聚合酶連鎖反應搭配核酸染劑定量樣本中活性及總退伍軍人菌濃度。
在59輛的研究對象中,雨刷水中之總退伍軍人菌屬陽性檢出率介於90.4%-98.3%,陽性樣本之濃度介於3.8 x 101 - 1.9 x 108 cells/mL,而總嗜肺性退伍軍人菌陽性檢出率為75.4%-78.9%;陽性樣本之檢出濃度介於5.7 x 100 – 7.6 x 103 cells/mL;活性方面,活性退伍軍人菌屬陽性檢出率介於88.5%-94.7%,其陽性樣本濃度介於4.9 x 100 - 1.8 x 108 cells/mL,而活性嗜肺性退伍軍人菌陽性檢出率為59.6%-57.9%,陽性樣本之檢出濃度介於1.1 x 101 – 4.0 x 103 cells/mL;在可培養性部分,退伍軍人菌屬陽性檢出率為42.3%-56.1%,但嗜肺性退伍軍人菌只有28.1%-32.7%。計算其雨刷水出水口濃度/雨刷水桶濃度 (O/T)比值大於1,顯示雨刷出水口的Legionella平均濃度較雨刷水桶內高,顯示雨刷水管線可能有Legionella汙染現象。
雨刷水的基質為自來水,比較自來水與雨刷水之水質條件發現自來水之濁度、導電度、總溶解固體 (TDS)、溶解性有機碳 (DOC)與異營性細菌 (HPC) (1.8NTU、87.8μS/cm、41.6 mg/L、小於1ppm和4.4x103 CFU/mL)顯著低於雨刷水 (27.5NTU、382.2μS/cm、204.1mg/L、3259.7ppm和6.2x106 CFU/mL,P=0.02、0.01、0.01、0.01和0.003),且自來水中總退伍軍人菌屬 (1.9x102 cells/mL)及其活性退伍軍人菌屬 (2.0 x 101 cells/mL)均顯著低於雨刷水 (4.2x106及3.5x106 cells/mL),約分別為21842和175000倍,顯示雨刷水的水質富含有機營養物質,使其利於退伍軍人菌孳生與存活,因而導致其雨刷水的汙染狀況較自來水嚴重。
以Generalized estimating equation (GEE)分析雨刷水退伍軍人菌污染之影響因子的模式中,總及活性之退伍軍人菌屬的檢出濃度顯著受到硬度負向影響(β=-0.011,P<0.0001和β=-0.01, P=0.001);在嗜肺性退伍軍人菌方面,硬度亦負向顯著影響總及活性之嗜肺性退伍軍人菌濃度(β=-0.007,P<0.0001和β=-0.007, P=0.01),另外在導電度越高時,其總及活性嗜肺性退伍軍人菌之濃度也會增高 (β=0.0003, P<0.0001和β=0.0005,P=0.0001),在模式中亦可發現雨刷清潔劑添加頻率小於每6個月添加1次者其車中雨刷水中總及活性嗜肺性退伍軍人菌的濃度顯著低於添加頻率大於每6個月添加1次者 (β=-0.24,P=0.0013和β=-0.58, P<0.001),而若欲控制雨刷水中退伍軍人菌汙染時應考量上述危險因子。
在59輛的研究對象中包括計程車輛 (職業駕駛)及民眾自用車 (非職業駕駛),發現職業駕駛者其車輛平均車齡較非職業駕駛車輛低,由於職業駕駛開車頻率高且開車時數長,加上職業駕駛添加雨刷清潔劑及雨刷水的頻率較高,因而發現在職業駕駛者其車輛雨刷水中總及活性退伍軍人菌屬濃度 (1.5x106和1.9x105 cells/mL)低於非職業駕駛 (4.9x106和4.6x106cells/mL),顯示在用車頻繁的情況下,能夠定期進行雨刷水操作及維護者,可降低雨刷水中的退伍軍人菌汙染情況。整體而言,本研究發現添加雨刷清潔劑無法完全抑制雨刷水中的退伍居人菌滋生,但其雨刷水的操作維護及用車習慣會影響雨刷水中的退伍軍人菌檢出及孳生。
zh_TW
dc.description.abstractPrevious studies show that occupational drivers infecting Legionnaires’ disease significantly greater than the general population, which is considered to be associated with Legionella contamination in windshield wiper fluid. The use of screen wash seems to reduce the infection risk; however, thorough environmental surveillance is unavailable. The objectives of this study is evaluating the concentration of Legionella in windshield fluids of vehicles and collecting the impact factors of “water quality”, ”information of vehicles” and “maintenance of wiper fluid” to determine how they affect the presence and abundance of Legionella in winper fluid samples.Thus, water samples were collected from the tank and outlet of the windshield wiper system of the vehicles selected in Taipei metropolitan area with purposive sampling. Except of culture assay for culturable Legionella, total and viable Legionella were quantified using quantitative real time polymerase chain reaction (qPCR) coupled with ethidium monoazide.
Total and viable Legionella spp. was detected in the range of 90.4%-98.3% and 88.5%-94.7%, for which the range of concentrations were 3.8 x 101 - 1.9 x 108 and 4.9 x 100 - 1.8 x 108 cells/mL, respectively. Total and viable L. pneumophila was detected in the range of 75.4%-78.9% and 59.6%-57.9%, respectively, and the range of concentration was 5.7 x 100 – 7.6 x 103 and 1.1 x 101 – 4.0 x 103 cells/mL. In addition, culturable Legionella spp. and L.pneumophila were detected in range of 42.3%-56.1% and 28.1%-32.7%. In the 59 subjects’ vehicles, Legionella concentration in outlet samples was greater than that in tank samples, indicating that Legionella contamination in their wiper fluid pipeline.
Because wiper fluid came from tap water, we compared the water quality between wiper fluid and tap water samples. It indicated that the turbidity, conductivity, TDS, DOC and HPC of tap water (1.8 NTU、87.8 μS/cm、41.6 mg/L、less than 1 ppm and 4.4x103 CFU/mL) is significantly higher than the wiper fluid’s (27.5 NTU、382.2 μS/cm、204.1 mg/L、3259.7 ppm and 6.2x106 CFU/mL,P=0.02、0.01、0.01、0.01 and 0.003). Besides, total and viable Legionella spp. concentration in tap water (1.9x102 and 2.0 x 101 cells/mL) was significantly lower (21842x and 175000x) then wiper fluid (4.2x106 and 3.5x106 cells/mL),respecterly. It indicated that the abounant oraganic materials in wiper fluid which accelerated the propagation and viability of Legionella.
Generalized estimating equation (GEE) model analyzed the association between impact factors and Legionella contamination. Total and viable Legionella spp. concentrations were negatively associated with hardness (β=-0.011,P<0.0001和β=-0.01, P=0.001). On the other hand, total and viable L. pneumophila concentrations was increased with conductivity (β=0.0003, P<0.0001和β=0.0005,P=0.0001). Furthermore, the total and viable L. pneumophila concentrations in wiper fluid samples which were added detergent solution below every six months was significantly lower than the vehicles which were adding detergent solution over every six months (β=-0.24,P=0.0013 and β=-0.58,P<0.001).These risk factors should be considered in the control of Legionella contamination in wiper fluid.
In this study, Professional driver’s vehicle age was younger than non-professional driver. Besides,the frequency of adding detergent soluntion in professional drivers were higher than non-professional drivers ; it might associated with high driving frequency and average driving time per day of professional drivers. Therefore, it found that total and viable Legionella spp. concentration in professional driver’s wiper fluid (1.5x106 and 1.9x105cells/mL) was lower than the non-professional driver’s (4.9x106 and 4.6x106cells/mL, p=0.13 and 0.07). In conclusion, even in the high driving frequency condition, the proper and frequent maintenance for wiper fluid might decrease the contamination of Legionella. Moreover, adding screen wash in windshield cound not significantly inhibit the growth of Legionella, but the habit of vehicle use and maintenance of wiper fluid could affect the presence and abundance of Legionella in wiper fluid samples.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:54Z (GMT). No. of bitstreams: 1
ntu-101-R99844014-1.pdf: 4143826 bytes, checksum: fbbd2d6cebc4b9b463c1c209335f2745 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
圖目錄 xi
表目錄 xiii
第一章 文獻回顧 1
1.1 退伍軍人菌及其環境影響因子 1
1.2 退伍軍人病 6
1.3 職業駕駛與退伍軍人病 7
1.4 車內空調系統與退伍軍人病 9
1.5 雨刷水與退伍軍人病 11
1.6車輛雨刷系統之原理與結構 12
1.7 車體退伍軍人菌汙染之可能的暴露機制 14
1.8 研究動機及其重要性 15
第二章 研究目的 16
第三章 研究架構 17
第四章 材料與方法 18
4.1環境採樣策略 18
4.1.1 採樣對象 18
4.1.2 採樣位置 18
4.1.3 採樣方式 18
4.1.4採樣時間及採樣數量 19
4.1.5運送條件 20
4.2 培養基及緩衝液 20
4.2.1 R2A培養基 20
4.2.2 NA 培養基 20
4.2.3 BCYEα培養基 20
4.2.4 DGVP 培養基 21
4.2.5 磷酸鹽緩衝液 (PBS) 22
4.2.6 TE緩衝液 22
4.2.7 酸性緩衝液 (KCl-HCl buffer) 22
4.3 樣本分析 23
4.3.1 樣本前處理 24
4.3.2 EMA 分析 25
4.3.3 DNA萃取 25
4.3.4 Real-time 分析 25
4.3.5 培養法分析 29
4.4 物化因子量測 31
4.4.1 餘氯 31
4.4.2 濁度 32
4.4.3 硬度 32
4.4.4 pH值 32
4.4.5 導電度及總固體溶解質 33
4.4.6 溶解性有機碳 33
4.5 影響因子的評估 33
4.6評估指標 34
4.7統計分析 34
4.7.1數據處理 34
4.7.2 統計方法 35
第五章 結果 38
5.1採樣對象 38
5.1.1採樣對象之用車資訊 38
5.1.2 採樣對象之雨刷水操作維護 39
5.2雨刷水之Legionella分析 41
5.2.1雨刷水Legionella陽性樣本數與陽性檢出率 41
5.2.2雨刷水Legionella陽性樣本之檢出濃度 44
5.2.3雨刷水桶與其出水口之Legionella 46
5.3雨刷水之水質因子 62
5.3.1雨刷水桶與其出水口之水質檢出情形 62
5.3.2雨刷水桶與其出水口各水質指標陽性樣本之數值分布 63
5.3.4 異營性細菌濃度與其他水質因子之相關性分析 67
5.4雨刷水Legionella污染之單變項分析 68
5.4.1 有無檢出Legionella 68
5.4.2 Legionella濃度 77
5.5雨刷水Legionella污染之多變項分析 91
5.5.1 有無檢出Legionella之多變項模式 91
5.5.2 Legionella濃度與之多變項模式 93
5.6職業駕駛與非職業駕駛之車輛資訊、雨刷水操作維護與雨刷水中Legionella 100
5.6.1 職業駕駛與非職業駕駛其車輛的退伍軍人菌污染 100
5.6.2 職業駕駛與非職業駕駛之車輛資訊及雨刷水操作維護 101
5.7自來水之Legionella與水質因子 105
5.7.1自來水之Legionella 105
5.7.2自來水之水質因子 106
5.8 自來水與雨刷水之比較 107
5.8.1 Legionella 107
5.8.2 比較自來水與雨刷水之水質 111
第六章 討論 115
第七章 結論 121
第八章 文獻引用 124
附錄 130
dc.language.isozh-TW
dc.title大台北都會區車輛雨刷水之退伍軍人菌污染調查zh_TW
dc.titleA Survey of Legionellae Contamination in Windshield Wiper Fluid of Vehicles in Taipei Metropolitan Areaen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明(Jia-Ming Lin),趙馨(Hsing Jasmine Chao)
dc.subject.keyword嗜肺性退伍軍人菌,退伍軍人菌,雨刷水,雨刷精,職業駕駛,zh_TW
dc.subject.keywordLegionella pneumophila,Legionella,windshield wiper fluid,screen wash,professional driver,en
dc.relation.page168
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-11-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf4.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved