請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66609完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建仁 | |
| dc.contributor.author | Shi-Yi Yang | en |
| dc.contributor.author | 楊士儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:46:07Z | - |
| dc.date.available | 2017-03-02 | |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2011-12-30 | |
| dc.identifier.citation | 1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55: 74-108.
2. Vital statistics, 1971-2001. Taipei, ROC: Department of Health 2002. 3. Taiwan cancer registry annual report. Taiwan: Department of Health. 4. Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet 2000;355: 479-85. 5. Mannino DM, Ford E, Giovino GA, Thun M. Lung cancer deaths in the United States from 1979 to 1992: an analysis using multiple-cause mortality data. Int J Epidemiol 1998;27: 159-66. 6. Chen KY, Chang CH, Yu CJ, Kuo SH, Yang PC. Distribution according to histologic type and outcome by gender and age group in Taiwanese patients with lung carcinoma. Cancer 2005;103: 2566-74. 7. Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97: 339-46. 8. Chou TY, Chiu CH, Li LH, et al. Mutation in the tyrosine kinase domain of epidermal growth factor receptor is a predictive and prognostic factor for gefitinib treatment in patients with non-small cell lung cancer. Clin Cancer Res 2005;11: 3750-7. 9. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009;458: 719-24. 10. Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002;297: 63-4. 11. Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455: 1069-75. 12. Politi K, Zakowski MF, Fan PD, et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 2006;20: 1496-510. 13. Ji H, Li D, Chen L, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006;9: 485-95. 14. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305: 1163-7. 15. Tang X, Shigematsu H, Bekele BN, et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 2005;65: 7568-72. 16. Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 2010;46: 1773-80. 17. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a different disease. Nat Rev Cancer 2007;7: 778-90. 18. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350: 2129-39. 19. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304: 1497-500. 20. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101: 13306-11. 21. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361: 947-57. 22. Pham D, Kris MG, Riely GJ, et al. Use of cigarette-smoking history to estimate the likelihood of mutations in epidermal growth factor receptor gene exons 19 and 21 in lung adenocarcinomas. J Clin Oncol 2006;24: 1700-4. 23. D'Angelo SP, Pietanza MC, Johnson ML, et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J Clin Oncol 2011;29: 2066-70. 24. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 2005;11: 1167-73. 25. Lee YJ, Cho BC, Jee SH, et al. Impact of environmental tobacco smoke on the incidence of mutations in epidermal growth factor receptor gene in never-smoker patients with non-small-cell lung cancer. J Clin Oncol 2010;28: 487-92. 26. Kawaguchi T, Ando M, Kubo A, et al. Long exposure of environmental tobacco smoke associated with activating EGFR mutations in never-smokers with non-small cell lung cancer. Clin Cancer Res 2011;17: 39-45. 27. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC, (eds). World Health Organization Classification of tumours. pathology and genetics of tumours of the lung, pleura, thymus, and heart. IARC Press, Lyon, France 2004. 28. Tanaka T, Matsuoka M, Sutani A, et al. Frequency of and variables associated with the EGFR mutation and its subtypes. Int J Cancer 2010;126: 651-5. 29. Sugio K, Uramoto H, Ono K, et al. Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking. Br J Cancer 2006;94: 896-903. 30. Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 2004;64: 8919-23. 31. Toyooka S, Tokumo M, Shigematsu H, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res 2006;66: 1371-5. 32. Sugio K, Ishida T, Yokoyama H, et al. Ras gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis. Cancer Res 1992;52: 2903-6. 33. Yanagawa N, Tamura G, Oizumi H, et al. Inverse correlation between EGFR mutation and FHIT, RASSF1A and RUNX3 methylation in lung adenocarcinoma: relation with smoking status. Anticancer Res 2011;31: 1211-4. 34. Guinee DG, Jr., Travis WD, Trivers GE, et al. Gender comparisons in human lung cancer: analysis of p53 mutations, anti-p53 serum antibodies and C-erbB-2 expression. Carcinogenesis 1995;16: 993-1002. 35. Marrogi AJ, Mechanic LE, Welsh JA, et al. TP53 mutation spectrum in lung cancer is not different in women and men. Cancer Epidemiol Biomarkers Prev 2005;14: 1031-3. 36. Kancha RK, von Bubnoff N, Peschel C, Duyster J. Functional analysis of epidermal growth factor receptor (EGFR) mutations and potential implications for EGFR targeted therapy. Clin Cancer Res 2009;15: 460-7. 37. Jiang J, Greulich H, Janne PA, et al. Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res 2005;65: 8968-74. 38. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 1996;36: 203-32. 39. Stabile LP, Davis AL, Gubish CT, et al. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 2002;62: 2141-50. 40. Raso MG, Behrens C, Herynk MH, et al. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res 2009;15: 5359-68. 41. Kawai H, Ishii A, Washiya K, et al. Estrogen receptor alpha and beta are prognostic factors in non-small cell lung cancer. Clin Cancer Res 2005;11: 5084-9. 42. Mollerup S, Jorgensen K, Berge G, Haugen A. Expression of estrogen receptors alpha and beta in human lung tissue and cell lines. Lung Cancer 2002;37: 153-9. 43. Yarden RI, Lauber AH, El-Ashry D, Chrysogelos SA. Bimodal regulation of epidermal growth factor receptor by estrogen in breast cancer cells. Endocrinology 1996;137: 2739-47. 44. Mukku VR, Stancel GM. Regulation of epidermal growth factor receptor by estrogen. J Biol Chem 1985;260: 9820-4. 45. Matsuo K, Ito H, Yatabe Y, et al. Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case-control study in Japanese. Cancer Sci 2007;98: 96-101. 46. Zuber MX, Simpson ER, Waterman MR. Expression of bovine 17 alpha-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells. Science 1986;234: 1258-61. 47. Simpson ER, Mahendroo MS, Means GD, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 1994;15: 342-55. 48. Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997;277: 1508-10. 49. Bell DW, Brannigan BW, Matsuo K, et al. Increased prevalence of EGFR-mutant lung cancer in women and in East Asian populations: analysis of estrogen-related polymorphisms. Clin Cancer Res 2008;14: 4079-84. 50. Polymeropoulos MH, Xiao H, Rath DS, Merril CR. Tetranucleotide repeat polymorphism at the human aromatase cytochrome P-450 gene (CYP19). Nucleic Acids Res 1991;19: 195. 51. Federman DD. The biology of human sex differences. N Engl J Med 2006;354: 1507-14. 52. Fasco MJ, Hurteau GJ, Spivack SD. Gender-dependent expression of alpha and beta estrogen receptors in human nontumor and tumor lung tissue. Mol Cell Endocrinol 2002;188: 125-40. 53. Ivanova MM, Mazhawidza W, Dougherty SM, Klinge CM. Sex differences in estrogen receptor subcellular location and activity in lung adenocarcinoma cells. Am J Respir Cell Mol Biol 2010;42: 320-30. 54. Dougherty SM, Mazhawidza W, Bohn AR, et al. Gender difference in the activity but not expression of estrogen receptors alpha and beta in human lung adenocarcinoma cells. Endocr Relat Cancer 2006;13: 113-34. 55. Mah V, Seligson DB, Li A, et al. Aromatase expression predicts survival in women with early-stage non small cell lung cancer. Cancer Res 2007;67: 10484-90. 56. Huang CS, Kuo SH, Lien HC, et al. The CYP19 TTTA repeat polymorphism is related to the prognosis of premenopausal stage I-II and operable stage III breast cancers. Oncologist 2008;13: 751-60. 57. Yim DS, Parkb SK, Yoo KY, et al. Relationship between the Val158Met polymorphism of catechol O-methyl transferase and breast cancer. Pharmacogenetics 2001;11: 279-86. 58. Spurdle AB, Hopper JL, Dite GS, et al. CYP17 promoter polymorphism and breast cancer in Australian women under age forty years. J Natl Cancer Inst 2000;92: 1674-81. 59. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005;2: e313. 60. Gebhardt F, Zanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 1999;274: 13176-80. 61. Sharp L, Cardy AH, Cotton SC, Little J. CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. a HuGE review. Am J Epidemiol 2004;160: 729-40. 62. Carey AH, Waterworth D, Patel K, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 1994;3: 1873-6. 63. Feigelson HS, Shames LS, Pike MC, et al. Cytochrome P450c17alpha gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer Res 1998;58: 585-7. 64. Zmuda JM, Cauley JA, Kuller LH, Ferrell RE. A common promotor variant in the cytochrome P450c17alpha (CYP17) gene is associated with bioavailability testosterone levels and bone size in men. J Bone Miner Res 2001;16: 911-7. 65. Weinberg OK, Marquez-Garban DC, Fishbein MC, et al. Aromatase inhibitors in human lung cancer therapy. Cancer Res 2005;65: 11287-91. 66. Haiman CA, Hankinson SE, Spiegelman D, et al. A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. Int J Cancer 2000;87: 204-10. 67. Zhu BT, Conney AH. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res 1998;58: 2269-77. 68. Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;6: 243-50. 69. Dawling S, Roodi N, Mernaugh RL, Wang X, Parl FF. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res 2001;61: 6716-22. 70. Liehr JG. Hormone-associated cancer: mechanistic similarities between human breast cancer and estrogen-induced kidney carcinogenesis in hamsters. Environ Health Perspect 1997;105 Suppl 3: 565-9. 71. Cavalieri EL, Stack DE, Devanesan PD, et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A 1997;94: 10937-42. 72. Boyapati SM, Shu XO, Ruan ZX, et al. Polymorphisms in ER-alpha gene interact with estrogen receptor status in breast cancer survival. Clin Cancer Res 2005;11: 1093-8. 73. Shearman AM, Cupples LA, Demissie S, et al. Association between estrogen receptor alpha gene variation and cardiovascular disease. JAMA 2003;290: 2263-70. 74. Herrington DM, Howard TD, Brosnihan KB, et al. Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation 2002;105: 1879-82. 75. Hershberger PA, Stabile LP, Kanterewicz B, et al. Estrogen receptor beta (ERbeta) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. J Steroid Biochem Mol Biol 2009;116: 102-9. 76. Modugno F, Knoll C, Kanbour-Shakir A, Romkes M. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat 2003;82: 191-7. 77. Coombes RC, Hall E, Gibson LJ, et al. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 2004;350: 1081-92. 78. Friedberg EC, Walker GC, Siede W, et al. DNA repair and mutagenesis. 2nd ed. Washington, D.C.: ASM Press; 2006. 79. Yang SY, Yang TY, Chen KC, et al. EGFR L858R mutation and polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking female lung adenocarcinoma patients. Clin Cancer Res 2011;17: 2149-58. 80. Ross D, Kepa JK, Winski SL, et al. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 2000;129: 77-97. 81. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411: 366-74. 82. Wei EX, Anga AA, Martin SS, et al. EGFR expression as an ancillary tool for diagnosing lung cancer in cytology specimens. Mod Pathol 2007;20: 905-13. 83. Sueoka-Aragane N, Imai K, Komiya K, et al. Exon 19 of EGFR mutation in relation to the CA-repeat polymorphism in intron 1. Cancer Sci 2008;99: 1180-7. 84. Liu W, He L, Ramirez J, et al. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions. Cancer Res 2011;71: 2423-7. 85. Brandt B, Hermann S, Straif K, et al. Modification of breast cancer risk in young women by a polymorphic sequence in the egfr gene. Cancer Res 2004;64: 7-12. 86. Wei Q, Cheng L, Hong WK, Spitz MR. Reduced DNA repair capacity in lung cancer patients. Cancer Res 1996;56: 4103-7. 87. Marks JL, Golas B, Kirchoff T, et al. EGFR mutant lung adenocarcinomas in patients with germline BRCA mutations. J Thorac Oncol 2008;3: 805. 88. Uramoto H, So T, Nagata Y, et al. Correlation between HLA alleles and EGFR mutation in Japanese patients with adenocarcinoma of the lung. J Thorac Oncol 2010;5: 1136-42. 89. Cheng YW, Hsieh LL, Lin PP, et al. Gender difference in DNA adduct levels among nonsmoking lung cancer patients. Environ Mol Mutagen 2001;37: 304-10. 90. Siegel D, Anwar A, Winski SL, et al. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol Pharmacol 2001;59: 263-8. 91. Ryk C, Kumar R, Sanyal S, et al. Influence of polymorphism in DNA repair and defence genes on p53 mutations in bladder tumours. Cancer Lett 2006;241: 142-9. 92. Traver RD, Siegel D, Beall HD, et al. Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer 1997;75: 69-75. 93. Kornguth DG, Garden AS, Zheng Y, et al. Gastrostomy in oropharyngeal cancer patients with ERCC4 (XPF) germline variants. Int J Radiat Oncol Biol Phys 2005;62: 665-71. 94. Milne RL, Ribas G, Gonzalez-Neira A, et al. ERCC4 associated with breast cancer risk: a two-stage case-control study using high-throughput genotyping. Cancer Res 2006;66: 9420-7. 95. Osorio A, Milne RL, Pita G, et al. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA). Br J Cancer 2009;101: 2048-54. 96. Liberti SE, Rasmussen LJ. Is hEXO1 a cancer predisposing gene? Mol Cancer Res 2004;2: 427-32. 97. Jin G, Wang H, Hu Z, et al. Potentially functional polymorphisms of EXO1 and risk of lung cancer in a Chinese population: A case-control analysis. Lung Cancer 2008;60: 340-6. 98. Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993;75: 1027-38. 99. Worrillow LJ, Travis LB, Smith AG, et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 2003;9: 3012-20. 100. Goessl C, Plaschke J, Pistorius S, et al. An intronic germline transition in the HNPCC gene hMSH2 is associated with sporadic colorectal cancer. Eur J Cancer 1997;33: 1869-74. 101. Fishel R, Ewel A, Lee S, Lescoe MK, Griffith J. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 1994;266: 1403-5. 102. Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 2002;191: 28-41. 103. Han JY, Yoon KA, Park JH, et al. DNA repair gene polymorphisms and benefit from gefitinib in never-smokers with lung adenocarcinoma. Cancer 2011;117: 3201-8. 104. Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 1999;59: 2557-61. 105. Lee JM, Lee YC, Yang SY, et al. Genetic polymorphisms of XRCC1 and risk of the esophageal cancer. Int J Cancer 2001;95: 240-6. 106. Yu MW, Yang SY, Pan IJ, et al. Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 2003;95: 1485-8. 107. Chang CH, Hsiao CF, Chang GC, et al. Interactive effect of cigarette smoking with human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) polymorphisms on the risk of lung cancer: a case-control study in Taiwan. Am J Epidemiol 2009;170: 695-702. 108. Hong YS, Deming SL, Gao YT, et al. A two-stage case-control study of EGFR polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2009;18: 680-3. 109. Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 2002;32: 391-411. 110. Matsuo K, Hiraki A, Ito H, et al. Soy consumption reduces the risk of non-small-cell lung cancers with epidermal growth factor receptor mutations among Japanese. Cancer Sci 2008;99: 1202-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66609 | - |
| dc.description.abstract | 本論文以三個子計劃來探討肺腺癌病人其EGFR基因突變在台灣地區的流行病學特性以及其可能發生的致突變機轉。第一部分評估EGFR基因突變盛行率在性別分布的差異,並探討其與主動抽煙及二手煙暴露之相關性。 第二部分評估EGFR基因突變與雌激素生合成及其代謝之基因多型性的相關。第三部分除了探討EGFR基因突變與EGFR 基因本身之基因多型性相關性外,並進而評估DNA 修補基因、異物代謝基因是否與EGFR基因突變有相關。
研究一、肺腺癌病人EGFR基因突變盛行率在性別分布的差異、與主動抽煙及二手煙暴露之相關性研究 目的: 肺癌是全球高發生率及高死亡率的癌症之一,每年約有百萬人被診斷並死於肺癌。在台灣所有惡性腫瘤死因中,肺癌也居首位。在台灣,過去30 年腺癌佔所有肺癌的比例始終高居第一,其中女性、非吸菸者有較高的比率會罹患肺腺癌。根據流行病學的特徵顯示主動抽煙、二手煙以及基因易感受性都是肺腺癌的可能危險因子。過去研究指出癌症組織的EGFR 基因會在特定的地方產生突變(如在exon19 產生in-frame deletion 、exon21產生 L858R點突變) ,而此些突變會與腫瘤發生的有關。因此本研究將探討性別、香煙暴露(含主動抽煙及二手煙) 差異是否會影響EGFR 基因突變。 方法: 研究收集台中榮總肺腺癌病人共617 名。此些個案完成EGFR 基因突變之定序分析。其中132 位個案同時參與臺灣女性肺腺癌之遺傳流行病學研究 (GEFLAC),因此由其中取得二手煙暴露之問卷資料。結果:相較於不抽煙者,主動抽煙與EGFR 基因突變成反比,同時29 歲前開始抽煙、抽煙的暴露達21 包年、或者戒煙小於21 年都與EGFR 基因突變的頻率成反比。至於二手煙的暴露沒有呈現劑量效應相關,然而當暴露的時間小於16 年時,相較於未暴露者,EGFR 基因有較低的突變比率。由此可見,EGFR 基因有較高的突變比率出現在不抽煙族群。進一步分析發現,不抽煙族群中,男性相較於女性有較高的exon19 in-frame deletion 突變比率(36.1% vs. 23.5%),相反地,女性相較於男性有較高的L858R突變比率 (28.8% vs. 20.4%)。結論:香煙暴露與EGFR 基因突變比率成反比。在不抽煙族群中,特定型別的EGFR 基因突變呈現性別差異,此現象推測可能有不同比重的分子機轉參與EGFR特定型別的致突變性。 研究二、進行女性不抽煙的肺腺癌病人EGFR基因L858R點突變與及荷爾蒙生合成代謝之基因多型性的相關性研究 目的: EGFR基因突變會與肺癌標靶治療的反應性有關,也會與腫瘤的發生有關。因此本研究檢視雌激素生合成、代謝基因的多型性是否會與EGFR 基因突變有相關。方法: 617 名肺腺癌病人組織檢體中有410 位是不抽煙者。據此評估CYP17、CYP19A1、ERα 及COMT 之易感受基因型與EGFR 基因突變發生的相關性。結果: 在女性不抽煙者,EGFR L858R突變與 CYP19A1(TTTA)n、ERα rs2234693、COMT rs4680 基因型有統計上的顯著相關,其校正後的風險對比值分別為:2.6 (95 % 信賴區間:1.2-5.7)、2.1 (95 % 信賴區間:1.1-4.0)、1.8 (95 % 信賴區間:1.0-3.2),CYP17 rs743572基因型其校正後的風險對比值為 1.5 (95 % 信賴區間:0.8-2.7),其相關性未達統計顯著水準。進一步地合併CYP17、CYP19A1、ERα 及COMT 等易感受等位基因型 (allele),經趨勢檢定之後,與EGFR L858R突變呈現劑量效應相關。此外,ERα 基因型也與EGFR exon19 in-frame deletion 及其他突變型(非L858R及exon19 in-frame deletion) 有統計上的顯著相關,其校正後的風險對比值分別為:2.9 (95 % 信賴區間:1.1-7.6)、4.3 (95 % 信賴區間:1.3-14.0)。再者,COMT rs4680在男性不抽煙者也呈現統計上的顯著相關,其校正後的風險對比值分別為3.6 (95 % 信賴區間:1.1-11.3)。結論:在不抽煙的肺腺癌病人,尤其是女性,EGFR L858R突變與雌激素生合成、代謝基因的多型性有相關。 研究三、EGFR exon 19 in-frame deletion與EGFR 基因、DNA 修補基因、及異物代謝基因之易感受基因型的相關性研究 目的: 檢視參與DNA 修補、解毒、異物代謝之易感受基因和EGFR 基因的基因多型性與EGFR基因exon 19 in-frame deletion 發生是否有相關。方法: 以410名不抽煙之肺腺癌病人組織,透過非條件羅輯迴歸模式,檢視上述易感受基因型與EGFR 基因突變的相關性。結果: 在女性不抽煙者,EGFR in-frame deletion與ERCC4 rs744154、NQO1 rs1800566 基因型有統計上的顯著相關,其校正後的風險對比值分別為:1.9 倍 (95 % 信賴區間:1.0-3.6)、2.2倍 (95 % 信賴區間:1.0-4.8),EXO1 rs1047840基因型其校正後的風險對比值為 7.6倍 但未達統計顯著水準。進一步地合併ERCC4、NQO1、及EXO1等易感受等位基因型 (allele),經趨勢檢定之後,與EGFR in-frame deletion呈現劑量效應相關。除此之外,在不抽煙者及女性不抽煙者EGFR (CA)n 基因型與EGFR in-frame deletion的發生也有統計上的顯著相關,其校正後的風險對比值分別為:1.7 倍 (95 % 信賴區間:1.0-2.9) 及1.9 倍 (95 % 信賴區間:1.0-3.5)。結論:在不抽煙的肺腺癌病人,尤其是女性,EGFR in-frame deletion的發生與DNA 修補、解毒及EGFR 本身的基因型有相關。 綜合本論文之研究顯示,EGFR 特定突變型別頻率在性別上呈現差異,此外,在女性不抽煙之肺腺癌病人EGFR基因突變,特別是L858R 及 exon19 in-frame deletion 分別與雌激素生合成、代謝機轉以及DNA 修補、解毒機轉的易感受基因型有關。同時,EGFR exon19 in-frame deletion也與EGFR 本身的易感受基因型有關。 此些似乎暗喻這兩種突變型的發生可能部分來自不同的分子機轉,部分共享相同的分子機制。有關基因與環境交互作用方面,環境暴露特別是環境荷爾蒙以及與肺腺癌相關的危險因子如二手煙,是否能修飾EGFR基因突變的發生有待進一步研究。雌激素受體之易感受基因型與各類型的EGFR突變皆有關,此現象暗示著抗雌激素藥物在EGFR突變的肺腺癌病人的預後應用值得進一步探討。 | zh_TW |
| dc.description.abstract | This dissertation included 3 studies to investigate the associations between EGFR mutation status and the genetic background and environmental carcinogens in never-smoking lung adenocarcinoma. Therefore, there will be several analyses and assays to be carried out:
(1) Using the questionnaires, the relationships between exposures to the cigarette smoke, environmental tobacco smoke (ETS) and EGFR hotspot mutations will be delineated. (2) The genetic polymorphisms of the biosynthesis and catabolism of estrogen and DNA repair pathways will be studied in terms of the mechanisms of EGFR hotspot mutations. Study1: The Associations between Sex and Smoking Status on EGFR Mutations in Adenocarcinoma Background and Aims: To assess the impact of cigarette smoke and environmental tobacco smoke (ETS) are associated with the EGFR mutations status in adenocarcinoma patients. Methods: We enrolled 617 patients with lung adenocarcinoma. The history of cigarette smoking-related characteristics was obtained from a questionnaire; Among 132 patients who were also participated in the Genetic Epidemiological Study of Lung Adenocarcinoma (GELAC) study, the history of ETS exposure were obtained. Results: Patients with more than 21 pack-years of smoking histories or smokers with the fist use cigarette before the age of 29, or those who quit smoking less than 21 years had a significant lower frequency of EGFR mutations than never-smokers. Furthermore, there was a significantly inverse trend between smoking dose and EGFR mutation (p<0.0001). With regard to ETS, there was not a significant dose-response relationship of patients exposed to ETS with EGFR mutations. But a significant association was found for patients exposed to ETS for ≦ 16 years compared to patients not exposed to ETS (p=0.05). Additionally, Sex was significantly associated with EGFR mutation status in never-smokers (p=0.03). The percentage of in-frame deletion was higher in males than females (36.1% vs. 23.5%), and the percentage of L858R mutation was higher in females than males (28.8% vs. 20.4%). Conclusion: The amount and duration of cigarette smoking history were inversely associated with the EGFR mutations status. However, the impact of ETS remains inconclusive. In never-smokers, a significant difference was found between EGFR mutation subtypes and sex, this sex difference implies different mechanisms for the EGFR mutagenesis in EGFR mutation subtypes. Study2: EGFR L858R Mutation and Polymorphisms of Genes related to Estrogen Biosynthesis and Metabolism in Never-smoking Female Lung Adenocarcinoma Patients Background and Aims: To assess whether polymorphisms of genes related to estrogen biosynthesis and metabolism are associated with EGFR mutations. Methods: We studied 617 patients with lung adenocarcinoma, including 410 never-smoking patients. On the basis of multiple candidate genes approach, the effects of polymorphisms of CYP17, CYP19A1, ERα and COMT in association with the EGFR mutations status were evaluated using logistic regression analysis. Results: In female never-smokers, significant associations with EGFR L858R mutation were found for the (TTTA)n repeats in CYP19A1 (odds ratio [OR], 2.6; 95% confidence interval [CI], 1.2-5.7 for one or two alleles with (TTTA)n repeats >7 compared to both alleles with (TTTA)n repeats ≦7), and the rs2234693 in ERα (OR,2.1; 95% CI, 1.1-4.0 for C/T and C/C genotypes compared to T/T genotype). The C/C genotype (vs. T/T genotype) of ERα was significantly associated with EGFR L858R mutation (OR, 3.0; 95% CI, 1.1-8.1), in-frame deletion (OR, 2.9; 95% CI, 1.1-7.6) and other mutations (OR, 4.3; 95% CI, 1.3-14.0). The genotype of COMT rs4680 was significantly associated with EGFR L858R mutation in female and male never-smokers showing OR’s (95% CI) of 1.8 (1.0-3.2) and 3.6 (1.1-11.3), respectively, for genotypes G/A and G/G compared to genotype A/A. The number of risk alleles of CYP17, CYP19A1, ERα and COMT was associated with an increasing OR of EGFR L858R mutation in female never-smokers (P=.0002 for trend). Conclusions: The L858R mutation of EGFR is associated with polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking female lung adenocarcinoma patients. The findings provide a clue for the genesis of EGFR mutations. Study3: EGFR Exon 19 In-frame Deletion and Polymorphisms of EGFR and DNA Repair Genes in Never-smoking Female Lung Adenocarcinoma Patients Background and Aims: To explore whether the genetic polymorphisms in genes related to DNA repair and detoxification metabolism and in epidermal growth factor receptor (EGFR) are associated with EGFR mutations. Methods: We studied 410 never-smoking patients with lung adenocarcinoma. Multivariate-adjusted OR [aOR] with the corresponding 95% confidence intervals [CI] of EGFR mutation status in association with genotypes were evaluated using logistic regression analysis. Results: The rs744154C/G in ERCC4 was significantly associated with EGFR exon19 in-frame deletion both in never-smokers (aOR, 1.7 with 95% CI, 1.0-3.0) and female never-smokers (aOR, 1.9 with 95% CI, 1.0-3.6), respectively. A significant association with EGFR exon19 in-frame deletion was found for the rs1800566C/T in NQO1 (aOR, 2.2 with 95% CI, 1.0-4.8) in female never-smokers. The rs1047840A/A genotype in EXO1 showed a 7.6-fold increase in the exon19 in-frame deletion in female never-smokers, but the association was marginally significant. Furthermore, the number of risk alleles in NQO1, ERCC4 and EXO1 was associated with an increasing aOR of EGFR exon19 in-frame deletion both in never-smokers and female never-smokers (P= 0.007 and 0.002 for trend, respectively). Additionally, the CA-repeat polymorphism in EGFR was significantly associated with exon19 in-frame deletion both in never-smokers (aOR, 1.7 with 95% CI, 1.0-2.9) and female never-smokers (aOR, 1.9 with 95% CI, 1.0-3.5), respectively, for both alleles with (CA)n repeats > 18 vs. one or two alleles ≦18). Conclusions: The exon19 in-frame deletion of EGFR is associated with polymorphisms in EGFR and DNA repair and detoxification metabolism genes in never-smoking lung adenocarcinoma patients, especially in females. The findings provide a clue about the genesis of EGFR mutations. In summary, EGFR hotspot mutations were more frequently found in never-smoking lung adenocarcinoma. Moreover, the sex difference in EGFR mutation subtypes was found in never-smoking lung adenocarcinoma, the exon 19 in-frame deletion was more frequently associated with male gender, while exon 21 mutations were more frequent in females. Additionally, from the viewpoints of molecular mechanisms of mutagenesis, the exon19 in-frame deletion of EGFR is associated with polymorphisms in EGFR and DNA repair and detoxification metabolism genes, while the L858R mutation of EGFR is associated with polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking lung adenocarcinoma patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:46:07Z (GMT). No. of bitstreams: 1 ntu-101-F93842004-1.pdf: 742265 bytes, checksum: 1924f33300b17090374c67b3e0796100 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要..................................................Ι
ABSTRACT..................................................V CONTENTS..................................................XI LIST OF TABLES...........................................XΙII LIST OF FIGURES...................................... XV CHAPTER 1 Introduction....................................1 CHAPTER 2 The Associations between Sex and Smoking Status on EGFR Mutations in Adenocarcinoma........................5 Introduction...............................................5 Materials and Methods......................................5 Results....................................................7 Discussion................................................11 CHAPTER 3 EGFR L858R Mutation and Polymorphisms of Genes related to Estrogen Biosynthesis and Metabolism in Never-smoking Female Adenocarcinoma Patients................. .25 Introduction............................................. 25 Materials and Methods.....................................26 Results...................................................31 Discussion................................................33 CHAPTER 4 EGFR Exon 19 In-frame Deletion and Polymorphisms of EGFR and DNA Repair Genes in Never-smoking Female Lung Adenocarcinoma Patients...................................46 Introduction..... ........................................46 Materials and Methods.....................................47 Results...................................................51 Discussion................................................53 CHAPTER 5 Conclusions and Perspectives....................74 REFERENCES................................................76 Table 2-1. Demographics and clinical characteristics of 617 patients affected with lung adenocarcinoma.......................................16 Table 2-2. Demographics and clinical characteristics of lung adenocarcinoma patients by EGFR mutation status......17 Table 2-3. Frequency of EGFR mutations of active smoking..18 Table 2-4. Frequency of EGFR mutations by total smoker-year of active smoking.........................................19 Table 2-5. Frequency of EGFR mutations by amoking free years of active smoking...................................20 Table 2-6. Frequency of EGFR mutations by Age at first cigarette.................................................21 Table 2-7. Frequency of EGFR mutations by exposure types of environmental tobacco smoke..................................................22-23 Table 2-8. Frequency of EGFR mutation status among never-smokers by sex............................................24 Table 3-1. Odds ratios of developing lung adenocarcinoma for EGFR mutation statusamong never smokers by sex ....40-41 Table 3-2. Multiple logistical regression analysis of associations between the number of risk alleles involved in estrogen biosynthesis and metabolism and the EGFR mutations in never-smoking affected with lung adenocarcinom.........42 Table S3-1. Allelic frequency of CYP17, ESRα, and COMT in Hapmap....................................................44 Table S3-2. Sequences of primers and Taqman probes for genotyping................................................45 Table 4-1. The associations between the polymorphisms of MSH2, NQO1, EXO1, and ERCC4 and the EGFR mutations in never-smoking males and females with lung adenocarcinoma.... 61-63 Table 4-2. The associations between the polymorphisms of XRCC1, hOGG1, CYP1A1 and the EGFR mutations in never-smoking males and females with lung adenocarcinoma.....64-66 Table 4-3. The associations between the polymorphisms of EGFR and the EGFR mutations in never-smoking males and females with lung adenocarcinoma......................67-68 Table 4-4. The associations between the polymorphisms of EGFR and the EGFR mutations in never-smoking males and females with lung adenocarcinoma..................... 69-71 Table 4-5. Multiple logistic regression analysis of on the associations between the number of risk alleles involved in detoxification and DNA repair and the EGFR mutations in never-smoking males and females with lung adenocarcinoma............................................72 Table S4-1. Allelic frequency of NQO1, XRCC1, hOGG1, EXO1, MSH2, ERCC4, and CYP1A1 in Hapmap or NCBI.................73 | |
| dc.language.iso | en | |
| dc.subject | 解毒基因 | zh_TW |
| dc.subject | DNA 修補基因 | zh_TW |
| dc.subject | 荷爾蒙 | zh_TW |
| dc.subject | 二手煙 | zh_TW |
| dc.subject | 抽煙 | zh_TW |
| dc.subject | 基因多型性 | zh_TW |
| dc.subject | EGFR 突變 | zh_TW |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | detoxification-related metabolism | en |
| dc.subject | cigarette smoke | en |
| dc.subject | environmental tobacco smoke | en |
| dc.subject | polymorphisms | en |
| dc.subject | estrogen biosynthesis and metabolism | en |
| dc.subject | DNA repair | en |
| dc.subject | EGFR mutation | en |
| dc.subject | never-smoker | en |
| dc.subject | lung adenocarcinoma | en |
| dc.title | 台灣肺腺癌與表皮生長因子受體基因突變流行病學研究 | zh_TW |
| dc.title | Genetic Epidemiological Study on Epidermal Growth Factor Receptor Mutations and Lung Adenocarcinoma in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊泮池,蕭朱杏,熊昭,張基晟,李文宗 | |
| dc.subject.keyword | 肺腺癌,EGFR 突變,基因多型性,抽煙,二手煙,荷爾蒙,DNA 修補基因,解毒基因, | zh_TW |
| dc.subject.keyword | EGFR mutation,cigarette smoke,environmental tobacco smoke,polymorphisms,estrogen biosynthesis and metabolism,DNA repair,detoxification-related metabolism,never-smoker,lung adenocarcinoma, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-12-30 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 724.87 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
