Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姚開屏
dc.contributor.authorPo-Yi Chenen
dc.contributor.author陳柏邑zh_TW
dc.date.accessioned2021-06-17T00:45:30Z-
dc.date.available2017-02-08
dc.date.copyright2012-02-08
dc.date.issued2012
dc.date.submitted2012-01-06
dc.identifier.citation參考文獻
中文文獻:
王朝茂 (1996)。「教師信念量表」。台北:心理。
巴克利 (Buckley, J. J., 2004/2006)。「模糊統計」(林原宏譯)。台北:五南。
世界衛生組織生活品質問卷臺灣版問卷發展小組(2004)。「台灣簡明版世界衛生組織生活品質問卷之發展及使用手冊」(第二版)。台北。
朱智洺 (2007)。李克特式量表與模糊語意量表計分的差異比較-以正態模糊數模擬為例。「統計與決策」,22,160-162。
任維廉、胡凱傑 (2001)。大眾運輸服務品質之發展與評估- 以臺北市公車系統為例。「運輸計劃季刊」,30(2),371-408。
汪洋、孫林岩 (2008)。李克特式量表與模糊語意量表計分的差異比較-以梯形模糊數模擬為例。「運籌與管理」,17(1),48-52。
吳柏林 (2005)。「模糊統計導論:方法與應用」。台北:五南。
吳柏林、楊文山 (1997)。 「模糊統計在社會調查分析的應用」。社會科學計量方法發展與應用 (楊文山主編,頁289-316)。台北:中央研究院中山人文社會科學研究所.
林原宏 (2001)。模糊語意變數量表計分之信度模擬分析。「測驗統計年刊」,9,193-219。
林原宏 (2002)。模糊語意量表的語意模糊數建構演算與實證分析。「調查研究」,11,31-71。
林原宏 (2003)。量表語意模糊數演算及其計分比較分析。「臺中師院學報」,17(2),279-304。
胡悅倫、吳柏林 (2002)。模糊統計在分析樂觀量表之應用。「國立政治大學教育與心理研究」,25,457-484。
胡悅倫、陳皎眉、吳柏林(2006)。應用模糊統計於A型量表分類之研究。「教育與心理研究」,29(1),151-181。
郭幸萍 (2009)。模糊綜合評判運用於房屋仲介公司之服務品質績效評估與策略之研究。「住宅學報」,18(2),45-68。
莊一凡、陳光勳 (2004)。國小教師實行資訊融入數學科教學現況調查分析之研究。「國立台北師範學院學報」,17(1),1-24。
張蓓蒂、洪敘峰、陳冠利 (2007)。應用 SEM與SVM建構供應商評估模式。「績效與策略研究」,4(1),113-134。
蕭宇佑 (2007)。「李克式量尺與視覺化類比量尺在生活品質量測上的比較:信度、效度與測量恆等性」(未發表之碩士論文)。台北:國立臺灣大學心理學研究所。








西文文獻:
Amiani, A., Jeric, D., Imberty3, M. & Belardinelli, M.O. (2004). Evaluation of the musical style using the semantic differential technique and a fuzzy graphic rating scale. Proceedings of the 8th International Conference on Music Perception & Cognition. Evanston.
Amin, A.P. & Kulkarni, H.R. (2000). Improvement in the information content of the glasgow coma scale fo the prediction of full cognitive recovery after head injury using fuzzy logic. Surgery, 127(3), 245-253.
Bellamy, N., Campbell, J. & Syrotuik, J. (1999). Comparative Study of Self-rating Pain scales in Rheumatoid arthritis patients. Current Medical Research and Opinion, 15(2), 121-127.
Bland, J.M. & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307-310.
Boroushaki, S. & Malczewski, J. (2010). Using the fuzzy majority approach for GIS-based multicriteria group decision making. Computer and Geosciences, 36(3), 302-312
Brown, S.J. & Morley, A.M. (2007).Risk perception, fuzzy representations and comparative optimism. British Journal of Psychology, 98, 578-587.
Brunier, G. & Graydon, J. (1996). A comparison of two methods of measuring fatigue in patients on chronic haemodialysis: visual analogue vs Likert scale. International Journal of Nursing Studies, 33(3), 338-348.
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464-504.
Chen, S. J., & Hwang, C. L (1992). Fuzzy multiple attribute decision making: Methods and applications. Berlin: Springer-Verlag.
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233-255.
Clarson, B.W. (1993). The accuracy of future forecasts and past judgements. Organizational Behavior and Human Decision Processes, 54, 245-267.
Cole, M. S., Bedeian, A. G., & Feild, H. S. (2006). The measurement equivalence of web-based and paper-and-pencil measures of transformational leadership: A multinational test. Organizational Research Methods, 9(3), 339-368.
Costas, C.S.L., Maranon, P.P. & Cabrera, J.A.H. (1994). Application of diffuse
measurement to the evaluation of psychological structures. Quality and Quantity, 28(3), 305-313.
Damiani, A., Jeric, D., Imberty3, M. & Belardinelli, M.O. (2004). Evaluation of the musical stule using the semantic differential technique and a fuzzy graphic rating scale Proceedings of the 8th International Conference on Music Perception & Cognition. Evanston.
Ebel, R. L. (1951). Estimation of the reliability of ratings. Psychometrika, 16(4), 407-424.
Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical-inference for coefficient alpha. Applied Psychological Measurement, 11(1), 93-103.
Flynn, D., van Schaik, P. & van Wersch, A. (2004). A comparison of multi-item likert and visual analogue scales for the assessment of transactionally defined coping fuction.
European Journal of Psychological Assessment, 20(1), 49-58.
Gehrman, P., Matt, G., Turingan, M., Dinh, Q., & Ancoli-Israel, S. (2002). Towaeds and understanding of self-reports of sleep. Journal of Sleep Research, 11(3), 229-236.
Gharakhlou, M., Faraji Sabokbar, H. A. & Givehchi, S. (2010). Access Enhancement by Making Changes in the Route Network to Facilitate Rescue Operations in Urban Disasters. International Journal of Environmental Research, 4(2), 183.
Gottfredson, L.S. (1981). Circumscription and compromise: a developmental theory of occupational aspirations, Journal of Counseling Psychology, 28, 545–579.
Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., McMurray, J., & Dargie, M.D., (1999). A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales and Likert scales in normal subjects duringsubmaximal exercise. Chest , 116, 1208–1217
Hesketh, B., Pryor, R., & Gleitzman, M., & Hesketh, T. (1988). Practical applications and psychometric evaluation of a computerized fuzzy graphic ration scale., In Fuzzy Sets in Psychology (T. Zetenyi Eds., pp. 425-454), New York: North-Holland..
Hesketh, B., Pryor, R. & Gleitzman, M. (1989). Fuzzy logic: Toward measuring Gottfredson’s concept of occupational social space. Journal of Counseling Psychology, 36(1), 103-109.
Hesketh, B., McLachlan, k. & Gardner, D. (1992) Work Adjustment Theory: An empirical test using a fuzzy rating scale.Journal of Vocational Behavior, 40(3), 318-337.
Hollen, P.J., Gralla, R.J., Kris, M.G., McCoy, S., Donaldson, D.W. & Moinpour, C.M. (2005). A comparison of visual analogue and numerical rating scale formats for the Lung Cancer Symptom Scale (LCSS): Does format affect patient ratings of symptoms and quality of life? Quality of Life Research, 14(3), 837-847.
Horn, J.L. & Mcardle, J.J. (1992 ). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18( 3), 117- 144.
Huang, F. C., Gillespie, R. B., & Kuo, A. D. (2006). Human adaptation to interaction forces in visuo-motor coordination. IEEE Transactions On Neural Systems And Rehabilitation Engineering: A Publication Of The IEEE Engineering In
Medicine And Biology Society, 14(3), 390-397.
Jamali, J. & Tooranloo, H.S. (2009).Prioritizing academic library service quality indicators using fuzzy approach. Library Management, 30(4), 319-333.
Jones, D., Westall, C., Averbeck, K., & Abdolell, M. (2003). Visual acuity assessment: a comparison of two tests for measuring children's vision. Ophthalmic and Physiological Optics, 23(6), 541-546.
Joyce, C.R.B., Zutshi, D.W., Hrubes, V., & Mason, R.M. (1975).Comparison of fixed interval and Visual Analogue Scales for rating chronic pain. European Journal of Clinical Pharmacology, 8, 415–420.
Kuo, R.J., Chi, S.C. & Teng, P.W. (2001). Generalized part family formation through fuzzy self-organizing feature map neural network. Computers & industrial engineering, 40(1), 79-100.
Koriat, A., & Goldsmith, M. (1996). Monitoring and control processes in the strategic regulation of memory accuracy. Psychological Review, 103, 490-517.
Law. C. K. (1996). Using fuzzy numbers in educational grading system. Fuzzy Sets and Systems, 83, 311-323.
Landis, J. R., & Koch, G. G. (1977). Measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
Lin, Y.H. & Wu, B. (2006). Fuzzy mode and its applications in survey research. Proceedings of the 10th WSEAS International Conference on applied mathmatics, USA, 286-291.
Luo, Z., & Ito, M. (1998). Diffusion-based learning theory for organizing visuo-motor coordination. Biological Cybernetics, 79(4), 279-289.
Maurer, T. J., & Pierce, H. R. (1998). A comparison of Likert scale and traditional measures of self-efficacy. Journal of Applied Psychology, 83(2), 324-329.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.
McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30-46.
Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543.
Moisiadis, F. (1999). Improving the Scales Used in AHP for QFD.In QFD Institute, Symposium on Quality Function Deployment.. Detroit, USA.
Morin, C.M. (1993). Insomnia:Psychological assessment and management. The Guilford Press: New York.
Opricovic, S. & Tzeng, G.H (2002). Multicriteria planning of post-earthquake sustainable reconstruction. Computer-Aided Civil and Infrastructure Engineering, 17, 3, 211-220.
Nejati, M., Nejati, M. & Shafaei, I. (2009). Ranking airlines' service quality factors using a fuzzy approach: Study of the Iranian society. International Journal of Quality reliability Management, 26(3), 247-260.
Neisser, U. (1967). Cognitive psychology. New York: Aooletion-Centry-Crofts.
Nomura, K., Yamaoka, K., Nakao, M., & Yano, E.(2005). Impact of insomnia on idividual health dissatisfaction in Japan, south Korea, and Taiwan. Sleep, 28(10), 1328-1322.
Opricovic, S. & Tzeng, G.H. (2002). Multicriteria planning of post-earthquake sustainable reconstruction. Computer-aided civil and infrastructure engineering, 17(3), 211-220.
Polkinghorne, D.E. (1984).Further extensions of methodological diversity for Counseling psychology. Journal of Counseling Psychology, 31, 416-429.
Pryor, R.G., Hesketh, B & Gleitzman, M. (1989). Making things clearer by making them fuzzy: Counseling illustrations of a fuzzy graphic rating scale. The Career Development Quarterly, 38(2), 136-147.
Reyna, V. F. (2004). How people make decisions that involve risk: A dual-process approach. Current Directions in Psychological Science .13, 60–66.
Reyna, V. F. Adam, M. B. (2003). Fuzzy-trace theory, risk communication and product labeling in sexually transmitted diseases. Risk Analysis. 23, 325–342.
Reyna, V. F. Brainerd, C. J. (1991).Fuzzy trace theory and framing effects in choice: Gist extraction, truncation and conversion. Journal of Behavioral Decision Making, 4, 249–262.
Schneider, S. (2001). In search of realistic optimism: Meaning, knowledge, and warm fuzziness.. American Psychologist, 56, 250–263.
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420-428.
Smithson, M. (1987). Fuzzy set analysis for behavior and social science. New York:Springer-verlag.
Smithson, M. & Verkuilen, J. (2006) Fuzzy set theory: Application in the social sciences. Sage Publications, Thousand Oaks, CA.
Sudman, S., Bradbum, N. M., & Schwarz, N. (1996). Thinking about answers: The application of cognitive to survey methodology, San Francisco, CA:Jossey-Bass.
Vandenberg, R. J. & Lance, C.E. (2000). Toward a further understanding of and improvement in measurement invariance methods and procedures. Organizational Research Methods, 5, 139–158.
Van Schaik, P. & Ling, J. (2003) Using on-line surveys to measure three key constructs of the quality of human-computer interaction in web sites: psychometric properties and implications. International Journal of Human-Computer Studies, 59, 545-567.
Vicent, A. H. (2002). Measurement issues in determining interrater agreement.Vincent, Andrea Harrell: U Oklahoma, US.
Wicherts, J.M & Dolan, C.V. (2010).Measurement Invariance in Confirmatory Factor Analysis: An Illustration Using IQ Test Performance of Minorities. Educational Measurement: Issues and Practice ,29(3), 39–47.
Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance abuse domain. In K. J. Bryant, & M. Windle (Eds.), The science of prevention: Methodological advance from alcohol and substance abuse research ( pp. 281–324). Washington, DC: American Psychological Association.
Wu, B & Yen, H.Y. (2004). A New approach of bivariate fuzzy time series: With applications to the stock index forecasting, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 11(6), 671-690.
Ximenez, C. & Revuelta, J. (2010). Factorial invariance in a repeated measures design application to the study of person-organization fit. Spanish Journal of Psychology, 13(1), 485-493.
Yu, S. C., & Lin, Y. H. (2008). Applications of fuzzy theory on health care: An example of depression disorder classification based on FCM. WSEAS Transactions on Information Science & Applications, 1 (5), 31-36.
Yu, S. C., & Yu, M, M. (2007). Fuzzy partial credit scaling: A more valid approach to
scoring beck depression inventory II. Social Behavior and Personality, 35 (9),
1163-1172.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338-352.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66599-
dc.description.abstract基於過去傳統測量方法與人類主觀認知在性質上的落差,過去二十年中,主張將模糊理論納入量表測量的研究廣泛的出現在各種領域。而針對這些研究,過去學者發現它們所測量到的模糊數具有提供個案諮商訊息、表徵複雜心理構念、驗證特殊理論等傳統測量工具無法提供的功能,而將這些模糊數轉換成明確實數後,其信效度也優於傳統的測量工具。但是,這些研究並無法回答使用模糊量表的研究成果,是否能和過去使用傳統測量工具的研究互相參照的問題。因此本研究即利用WHOQOL-BREF台灣版做為工具,採受試者內設計,比較受試者在隸屬度加權量尺(FPWS)、模糊圖形量表(FGRS)、模糊部份給分法(FPCS)、Chen與 Hwang所提出模糊計分法(CH)等四種模糊計分方式上與傳統量表的一致性和測驗恆等性(ME/I)。本研究利用404位受試者的資料進行分析,分別利用Cronbach α係數、組內相關係數(ICC)、確認式因素分析進行內部一致性信度、一致性與ME/I的分析。本研究結果顯示FPWS、FGRS、FPCS的內部一致性信度較傳統的李克特式量尺(LS)好,而在範疇層次的分析亦顯示它們與LS間具有良好的一致性。而在測驗恆等性方面,進入分析的FPWS、FGRS、FPCS皆接受了因素負荷量恆等性的模型,且方法間的差異並未在觀察分數上顯示出實質的影響。故總結來說,研究者認為這三種模糊計分與傳統測量間的結果是可以互相參照的,但是受限於研究工具以及樣本特性,未來的研究可以針對不同領域的量表、不同的模糊計分、不同背景的族群做進一步探討。zh_TW
dc.description.abstractIn past two decades, researchers have proposed to combine fuzzy theory into measurement in various areas, basing on the difference between properties of human cognition and traditional measure methods. According to their studies’ results, the fuzzy numbers collected by fuzzy scale can provide more consulting information , verify special theory and represent complicated constructs; even if we transform these fuzzy numbers to crisp numbers, the results collected by fuzzy scale are superior to those by traditional measurement in both validity and reliability. However, the comparability of results between fuzzy scale and traditional method is yet to confirm by previous studies. Hence, in present study, researcher use WHOQOL-BREF Taiwan version as a instrument to test agreement and Measurement Equivalence /Invariance (ME/I) between fuzzy scale weighted by membership (FPWS), fuzzy partial credit scaling(FPCS), fuzzy graphic scale(FGRS), fuzzy scale proposed by Chen and Hwang(CH) and traditional scale in repeated measurement experimental design, with a set of data from 404 subjects. Reliability, agreement and ME/I were applied by using cronbach’s alpha Coefficient, Intraclass Correlation Coefficient and confirmatory factor analysis respectively. The results indicate that the reliability of FPCS, FPWS, FGRS are superior to traditional Likert Scale(LS) , and all four fuzzy scales show almost perfect agreement with LS at domain level. In ME/I analyses, FPCS, FPWS and FGRS accepted the model that constrained equal factor loading and show no substantial difference on manifest variables with the traditional scale. To sum up, combine the results of agreement and ME/I analysis, researcher suggest that the results collected by FPCS, FPWS, FGRS and traditional scales are comparable, but limited by study’s instrument and characters of subjects. Further investigation of agreement and ME/I properties between fuzzy and traditional scales would lie on other sets of population and research area.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:45:30Z (GMT). No. of bitstreams: 1
ntu-101-R98227104-1.pdf: 3518777 bytes, checksum: 14513456b5d6f11e09da87c7d9599a5e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目次
第一章 緒論-----------------------------------------------1
1-1模糊理論-------------------------------------------------3
1-2模糊理論與人類主觀認知-------------------------------------5
1-3模糊量表的形式--------------------------------------------7
1-4延伸自圖形化量尺的模糊量表----------------------------------8
1-5延伸自形容詞量尺的模糊量表----------------------------------9
1-6 Chen 與 Hwang的模糊計分法-------------------------------12
1-7一致性與測驗恆等性對於模糊量表的重要性 -----------------------15
第二章 研究方法-------------------------------------------21
2-1受試者與施測程序------------------------------------------23
2-2研究工具------------------------------------------------25
2-3計分程序與資料分析----------------------------------------26
第三章 結果----------------------------------------------30
3-1描述統計------------------------------------------------30
3-2信度分析------------------------------------------------31
3-3一致性分析----------------------------------------------32
3-4測驗恆等性----------------------------------------------33
3-5填答難易度與表面效度--------------------------------------34
第四章 討論----------------------------------------------36
4-1研究限制與未來研究方向---- --------------------------------40
參考文獻---------------------------------------------------42
附錄------------------------------------------------------51
表目次
表一 受試者之背景變項----------------------------------------24
表二 各種計分於四個範疇的描述統計----------------------------- 30
表三 各種計分方式下分量表的Cronbach α係數和t值- ----------------31
表四 模糊計分與原版WHOQOL-BREF於範疇層次的ICC與其95%信賴區間-----32
表五 各種模糊計分與原版WHOQOL-BREF的ME/I適配結果----------------33
表六 模糊計分法和原本WHOQOL-BREF在各範疇平均數差異和手冊所提供之S.D-34
表七 各種模糊測量方式之的難易度與表面效度及其和LS間的差異檢定---- 35
表八 CH計分於三個範疇的描述統計----------------------------- 37
表九 CH計分與原版WHOQOL-BREF的ME/I適配結果-------------------38
圖目次
圖一 三角糢糊數----------------------------------------------4
圖二 常態模糊數----------------------------------------------5
圖三 李克特式量尺範例-----------------------------------------9
圖四 「填寫百分比」的模糊量表----------------------------------10
圖五 「填寫百分比」之模糊量表的隸屬度假設------------------------10
圖六 八個轉換量尺--------------------------------------------13
圖七 「填寫百分比」版本的WHOQL-BREF台灣版----------------------25
圖八FGRS版本的WHOQL-BREF台灣版-------------------------------26
圖九 原版WHOQL-BREF台灣版-----------------------------------26
圖十 ME/ I適配之模型----------------------------------------28
dc.language.isozh-TW
dc.subject測量驗恆等性zh_TW
dc.subject模糊量表zh_TW
dc.subject李克特式量尺zh_TW
dc.subject一致性zh_TW
dc.subjectFuzzy Scaleen
dc.subjectMeasurement Invarianceen
dc.subjectAgreementen
dc.subjectLikert-Type Scaleen
dc.title以WHOQOL-BREF探討傳統與模糊量表間的一致性與測驗恆等性zh_TW
dc.titleInvestigation of the Agreement and Measurement Invariance Between Traditional and Fuzzy Scale by WHOQOL-BREFen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林原宏,游森期
dc.subject.keyword模糊量表,李克特式量尺,測量驗恆等性,一致性,zh_TW
dc.subject.keywordFuzzy Scale,Likert-Type Scale,Measurement Invariance,Agreement,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2012-01-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved