請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66566完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
| dc.contributor.author | Tzu-Hsuen Yuan | en |
| dc.contributor.author | 袁子軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:43:34Z | - |
| dc.date.available | 2013-03-02 | |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-01-12 | |
| dc.identifier.citation | References
Allam E, Zhang W, Al-Shibani N, Sun J, Labban N, Song F, Windsor LJ. Effects of cigarette smoke condensate on oral squamous carcinoma cells. Arch Oral Biol 2011;doi:10.1016/j.archoralbio.2011.03.008. Aposhian HV, Aposhian MM. Arsenic toxicology: five questions. Chem Res Toxicol 2006;19:1-15. Armstrong BG, Kazantzis G. Prostatic cancer and chronic respiratory and renal disease in British cadmium workers: a case-control study. Br J Ind Med 1985;42:540-5. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Science 2002;115:3719-3727. Barany E, Bergdahl IA, Schütz A, Skerfving S, Oskarsson A. Inductively coupled plasma mass spectrometry for direct multi-element analysis of diluted human blood and serum. Journal of Analytical Atomic Spectrometry 1997;12: 1005-9. Beaver LM, Stemmy EJ, Schwartz AM, Damsker JM, Constant SL, Ceryak SM, Patierno SR. Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure. Environ Health Perspect 2009;117:1896-902. BHP. Cancer Registry Annual Report, 2006 Taiwan. Bureau of Health Promotion, Department of Health, Executive Yuan, Republic of China; 2009. Available at: http://crs.cph.ntu.edu.tw/uploadimages/Y95-ALL.pdf [accessed 31 August 2010]. BHP. Cancer Registry Annual Report, 2007 Taiwan. Bureau of Health Promotion, Department of Health, Executive Yuan, Republic of China; 2010. Available at: http://www.bhp.doh.gov.tw/BHPnet/Portal/Statistics.aspx [accessed 22 October 2011]. Bindhu OS, Ramadas K, Sebastian P, Pillai MR. High expression levels of nuclear factor kappa B and gelatinases in the tumorigenesis of oral squamous cell carcinoma. Head Neck 2006;28:916-25. Bishara SE, Barrett RD, Selim MI. Biodegradation of orthodontic appliances. Part II. Changes in blood level of Nickel. Am J Orthod Dentofacial Orthop 1993;103:115-9. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988;48:3282-7. Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, et al. Effects of age on plasma matrix metalloproteianses (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail 2007;13:530-40. Cammarota M, Lamberti M, Masella L, Galletti P, Rosa MD, Sannolo N, et al. Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicology in Vitro 2006;20:1125-32. Case CP, Ellis L, Turner JC, Fairman B. Development of a routine method for the determination of trace metals in whole blood by magnetic sector inductively coupled plasma mass spectrometry with particular relevance to patients with total hip and knee arthroplasty. Clinical Chemistry 2001;47:275-80. Chandra S, Chauhan LKS, Dhawan A, Murthy RC, Gupta SK. In vivo genotoxic effects of industrial waste leachates in mice following oral exposure. Environ Mol Mutagen 2006;47:325-33. Chang YH, Lin IL, Tsay GJ, Yang SC, Yang TP, Ho KT, et al. Elevated circulatory MMP-2 and MMP-9 levels and activities in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Biochem 2008;41:955-9. Chang FH, Wang SL, Huang YL, Tsai MH, Yu ST, Chang LW. Biomonitoring of chromium for residents of areas with a high density of electroplating factories. J Expo Sci Environ Epidemiol 2006a;16:138-46. Chang FH, Wang HJ, Wang SL, Wang YC, Hsieh DPH, Chang LW, et al. Survey of urinary nickel in residents of areas with a high density of electroplating factories. Chemosphere 2006b;65:1723-30. Chaudhary AK, Singh M, Bharti A, Asotra K, Sundaram S, Mehrotra R. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J Biomed Sci 2010;17:10. Chen CJ, Chuang YC, You SL, Lin HY. Aretrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer 1986;53:399-405. Chiang CT, Hwang YH, Su CC, Tsai KY, Lian IB, Yuan TH, et al. Elucidating the underlying causes of oral cancer through spatial clustering in high-risk areas of Taiwan with a distinct gender ratio of incidence. Geospatial Health 2010a;4:230-42. Chiang CT, Lian IB, Su CC, Tsai KY, Lin YP, Chang TK. Spatiotemporal trends in oral cancer mortality and potential risks associated with heavy metal content in Taiwan soil. Int J Environ Res Public Health 2010b;7:3916-28. Chu SC, Yang SF, Lue KH, Hsieh YS, Hsiao TY, Lu KH. The clinical significance of gelatinase B in gouty arthritis of the knee. Clin Chim Acta 2004;339:77-83. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295:2387-92. Danadevi K, Rozati R, Banu BS, Grover P. Genotoxic evaluation of welders occupationally exposed to chromium and nickel using the Comet and micronucleus assays. Mutagenesis 2004;19:35-41. Davidson T, Kluz T, Burns F, Rossman T, Zhang Q, Uddin A, et al. Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice. Toxicol Appl Pharmacol 2004;196:431-7. Davies JM, Easton DF, Bidstrup PL. Mortality from respiratory cancer and other causes in United Kingdom chromate production workers. Br J Ind Med 1991;48:299-313. de Vicente JC, Fresno MF, Villalain L, Vega JA, Hernández Vallejo G.. Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol 2005;41:283-93. Demir TA, Isikli B, Urer SM, Berber A, Akar T, Canbek M, et al. Nickel exposure and its effects. Biometals 2005;18:7-13. Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: Contrasting, overlapping and compensatory function. Biochim Biophys Acta 2010;1803:103-20. Ferreccio C, Gonzalez PC, Milosavjlevic SV, Marshall GG, Sancha AM, Smith AH. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 2000;11:673-9. Gandhi G, Kumar N. DNA damage in peripheral blood lymphocytes of individuals residing near a wastewater drain and using underground water resources. Environ Mol Mutagen 2004;43:235-42. Gangane N, Chawla S, Anshu, Gupta SS, Sharma SM. Reassessment of risk factors for oral cancer. Asian Pacific J Cancer Prev 2007;8:243-8. Gibb HJ, Lees PS, Pinsky PF, Rooneym BC. Lung cancer among workers in chromium chemical production. Am J Ind Med 2000;38:115-26. Grimsrud TK, Berge SR, Haldorsen T, Andersen A. Exposure to different forms of nickel and risk of lung cancer. Am J Epidemiol 2002;156:1123-32. Grimsrud TK, Peto J. Persisting risk of nickel related lung cancer and nasal cancer among Clydach refiners. Occup Environ Med 2006;63:365-6. Hayes RB. The carcinogenicity of metals in humans. Cancer Causes Control 1997;8:371-385. Heim KE, Bates HK, Rush RE, Oller AR. Oral carcinogenicity study with nickel sulfate hexahydrate in Fischer 344 rats. Toxicol Appl Pharmacol 2007;224:126-37. IARC. Chromium, Nickel and Welding. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 49. IARC, Lyon; 1990. IDBMOEA. Handbook of the Integrated Pollution Prevention Techniques for Metal Surface Treatment Industries ─ Electroplating Industry. Industrial Development Bureau Ministry of Economic Affairs, Executive Yuan, Republic of China, Taipei; 2002 (in Chinese). Jacob-Ferreira AL, Passos CJ, Jordao AA, Fillion M, Mergler D, Lemire M, et al. Mercury exposure increases circulating net matrix metalloproteinase (MMP)-2 and MMP-9 activities. Basic Clin Pharmacol Toxicol 2009;105:281-8. Josyula AB, Poplin GS, Kurzius-Spencer M, McClellen HE, Kopplin MJ, Stürup S, et al. Environmental arsenic exposure and sputum metalloproteinase concentrations. Environ Res 2006;102:283-90. Kasprzak KS, Sunderman FW, Salnikow K. Nickel carcinogenesis. Mutat Res 2003;533:67-97. Kerosuo H, Moe G, Hensten-Pettersen A. Salivary nickel and chromium in subjects with different types of fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 1997;111:595-8. Kingsley K, O’Malley S, Ditmyer M, Chino M. Analysis of oral cancer epidemiology in the US reveals state-specific trends: implications for oral cancer prevention. BMC Public Health 2008;8:87. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 1995;24:450-3. Kuo HW, Wu ML. Effects of chromic acid exposure on immunological parameters among electroplating workers. Int Arch Occup Environ Health 2002;75:186-90. Kuropkat C, Plehn S, Herz U, Dunne AA, Renz H, Werner JA. Tumor marker potential of serum matrix metalloproteinases in patients with head and neck cancer. Anticancer Res 2002;22:2221-7. Lamberti M, Perfetto B, Costabile T, Canozo N, Baroni A, Liotti F, et al. In vitro evaluation of matrix metalloproteinases as predictive testing for nickel, a model sensitizing agent. 2004;195:321-30. Lin SC, Lo SS, Liu CJ, Chung MY, Huang JW, Chang KW. Functional genotype in matrix metalloproteinases-2 promoter is a risk factor for oral carcinogenesis. J Oral Pathol Med 2004;33:405-9. Lin YP, Teng TP, Chang TK. Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape Urban Plan 2002;62:19-35. Liu SY, Lin MH, Yang SC, Huang GC, Chang L, Chang S, Yen CY, Chiang WF, Kuo YY, Chen LL, Lee CH, Liu YC. Increased expression of matrix metalloproteinase-2 in oral cells after short-term stimulation and long-term usage of areca quid. J Formos Med Assoc 2005a;104:390-7. Liu SY, Lin MH, Yang SC, Huang GC, Chang L, Chang S, Yen CY, Chiang WF, Lee CH, Kuo YY, Liu YC. Areca quid chewing enhances the expression of salivary matrix metalloproteinase-9. J Formos Med Assoc 2005b;104:113-9. Lukashew ME, Werb Z. ECM signaling: orchestrating cells behaviour and mis behaviour. Trends Cell Biol 1998;8:437-441. Massano J, Regateiro FS, Januario G, Ferreira A. Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:67-76. Morgan LG, Usher V. Health problems associated with nickel refining and use. Ann Occup Hyg 1994;38:189-198. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999;274:21491-4. Nemec P, Goldbergová M, Swobodnik T, Polásková D, Soucek M, Vasků A. Polymorphism of gene promotor region for MMP-2 in rheumatoid arthritis. Vnitr Lek 2006;52:348-54 (in Czech). Nordberg GF, Fowler BA, Nordberg M, Friberg LT, editors. Handbook on the Toxicology of Metals. 3rd ed. Burlinton, MA: Academic Press; 2007. O-charoenrat P, Khantapura P. The role of genetic polymorphisms in the promoters of the matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 genes in head and neck cancer. Oral Oncol 2006;42 :257-67. Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S. Arsenic unregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008;295:293-302. Oreggia F, De Stefani E, Correa P, Fierro L. Risk factors for cancer of the tongue in Uruguay. Cancer 1991;67:180-3. Paczek L, Michalska W, Bartlomiejczykl I. Trypsin, elastase, plasmin and MMP-9 activity in the serum during the human ageing process. Age Ageing 2008;37:318-23. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin 2005;55:74-108. Patel BP, Shah SV, Shukla SN, Shah PM, Patel PS. Clinical significance of MMP-2 and MMP-9 in patients with oral cancer. Head Neck 2007;29:564-72. Patierno SR, Dirscherl LA, Xu J. Transformation of rat tracheal epithelial cells to immortal growth variants by particulate and soluble nickel compounds. Mutat Res 1993;300:179-193. Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 2001;276:7549-58. Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol 2007;26:587-96. Reynolds M, Stoddard L, Bespalov I, Zhitkovich A. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair. Nucleic Acids Res 2007;35:465-476. Riedel F, Gotte K, Schwalb J, Hormann K. Serum levels of matrix metalloproteinase-2 and -9 in patients with head and neck squamous cell carcinoma. Anticancer Res 2000;20:3045-9. ROCEPA. Farmland Soil Heavy Metal Investigation and Contaminated Site Control Plan. Environmental Protection Administration of the Republic of China (Project No.: EPA-90GA13-03-90A285), Taipei; 2002 (in Chinese). Ruokolainen H, Pääkkö P, Turpeenniemi-Hujanen T. Expression of matrix metalloproteinase-9 in head and neck squamous cell carcinoma: a potential marker for prognosis. Clin Cancer Res 2004;10:3110-6. Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2008;21:28-44. Scherer S, de Souza TB, de Paoli J, Brenol CV, Xavier RM, Brenol JC. Matrix metalloproteinase gene polymorphisms in patients with rheumatoid arthritis. Rheumatol Int 2010;30:369-73. Setcos JC, Babaei-Mahani A, Silvio LD, Mjör IA. The safety of nickel containing dental alloys. Dental Materials 2006;22:1163-8. Sillanaukee P, Kalela A, Seppä K, Höyhtyä M, Nikkari ST. Matrix metalloproteinase-9 is elevated in serum of alcohol abusers. Eur J Clin Inves 2002;32:225-9. Silvera SAN, Rohan TE. Trace elements and cancer risks: a review of the epidemiologic evidence. Cancer Causes Control 2007;18:7-27. Singh RD, Haridas N, Patel JB, Shah FD, Shukla SN, Shah PM, Patel PS. Matrix metalloproteinases and their inhibitors: correlation with invasion and metastasis in oral cancer. Ind J Clin Biochem 2010;25:250-9. Singh RD, Nilayangode H, Patel JB, Shah FD, Shukla SN, Shah PM, Patel PS. Combined evaluation of matrix metalloproteinases and their inhibitors has better clinical utility in oral cancer. Int J Biol Markers 2011;26:27-36. Stayner L, Smith R, Thun M, Schnorr T, Lemen R. A dose-response analysis and quantitative assessment of lung cancer risk and occupational cadmium exposure. Ann Epidemiol 1992;2:177-94. Stout MD, Herbert RA, Kissling GE, Collins BJ, Travlos GS, Witt KL, et al. Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ Health Perspect 2009;117:716-22. Stridsklev IC, Schaller KH, Raithel HJ. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method. Int Arch Occup Environ Health 2004;77:587-91. Su CC, Chung JA, Hsu YY, Huang SJ, Lian IB. Age at diagnosis and prognosis of oral cancer in relation to patient’s residential area: experience from a medical center in Taiwan. Oral Oncol 2008;44:1032-8. Su CC, Lin YY, Chang TK, Chiang CT, Chung JA, Hsu YY, et al. Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients’ residential areas in Taiwan. BMC Public Health 2010a;10:67. Su CC, Tsai KY, Hsu YY, Lin YY, Lian IB. Chronic exposure to heavy metals and incidence of oral cancer in Taiwanese males. Oral Oncology 2010b;46:586-90. Su CC, Yang HF, Huang SJ, Lian IB. Distinctive features of oral cancer in Changhua County: high incidence, buccal mucosa preponderance, and a close relation to betel quid chewing habit. J Formos Med Assoc 2007;160:225-33. Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogeneis – a health risk assessment and management approach. Mol Cell Biochem 2004;255:47-55. Tchounwou PB, Patlolla AK, Centeno JA. Carcinogenic and systemic health effects associated with arsenic exposure – a critical review. Toxicol Pathol 2003;31:575-588. Tisch M, Enderle G, Zöller J, Maier H. Cancer of the oral cavity in machine workers. Laryngorhinootologie 1996;75:759-63 (in German). Tisch M, Maier H. Squamous epithelial carcinoma of the tongue after occupational exposure to chromium VI compounds. Laryngorhinootologie 1996;75:455-8 (in German). Tseng YH, Chang KW, Liu CJ, Lin CY, Yang SC, Lin SC. Areca nut extract represses migration and differentiation while activating matrix metalloproteinase-9 of normal gingival epithelial cells. J Periodont Res 2008;43:490-9. Uddin AN, Burns FJ, Rossman TG, Chen H, Kluz T, Costa M. Dietary chromium and nickel enhance UV-carcinogenesis in skin of hairless mice. Toxicol Appl Pharmacol 2007;221:329-38. WHO (World Health Organization). Trace elements in human nutrition and health. World Health Organization, Geneva, 1996. Würtz SØ, Schrohl AS, MØller SØrensen N, Lademann U, Christensen IL, Mouridsen H, Bürnner N. Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocrine-related cancer 2005;12:215-227. Yorioka CW, Coletta RD, Alves F, Nishimoto IN, Kowalski LP, Graner E. Matrix metalloproteinase-2 and -9 activities correlate with the disease-free survival of oral squamous cell carcinoma paients. Int J Oncol 2002;20:189-94. Yoshizaki T, Maruyama Y, Sato H, Furukawa M. Expression of tissue inhibitor of matrix metalloproteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. Int J Cancer (Pred Oncol) 2001;95:44-50. Yuan TH, Lian IB, Tsai KY, Chang TK, Chiang CT, Su CC, et al. Possible association between nickel and chromium and oral cancer: A case-control study in central Taiwan. Sci Total Environ 2011;409:1046-52. Zhang W, Song F, Windsor LJ. Cigarette smoke condensate affects the collagen-degrading ability of human gingival fibroblasts. J Periodont Res 2009;44:704-13. Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999;99:1788-94. Zhou J, Olson BL, Windsor LJ. Nicotine increases the collagen-degrading ability of human gingival fibroblasts. J Periodont Res 2007;42:228-35. Zhitkovich A. Chromium: exposure, toxicity, and biomonitoring approaches. In: Wilson SH, Suk WA (Eds.). Biomarkers of Environmentally Associated Disease: Technologies, Concepts, and Perspectives. Lewis Publishers, Boca Raton, 2002, Chapter 19. Zhitkovich A. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium (Ⅵ). Chem Res Toxicol 2005;18:3-11. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66566 | - |
| dc.description.abstract | 在過去的二十年間,坐落於中台灣的彰化縣被發現到有著土壤金屬汙染的情況,而當地的金屬相關工業所排放之廢水更被懷疑是造成土壤金屬汙染的主要原因。此外,一般已知的口腔癌危險因子並不能有效地解釋彰化縣居高不下的口腔癌盛行率而且此地區亦存有不少口腔癌的特異性,而過去的職業性及生態學研究則顯示了金屬暴露與口腔癌發展之間存在著可能的相關性。基質金屬蛋白酶(MMPs)這一系列的金屬依賴性蛋白分解酵素與許多癌症的侵犯及轉移有所關聯,其中基質金屬蛋白酶-2(MMP-2)與基質金屬蛋白酶-9(MMP-9)的基因表現以及酵素活性則被發現與口腔癌的發展有關。再者,細胞實驗與流行病學研究都表示金屬暴露可能會增加基質金屬蛋白酶-2與基質金屬蛋白酶-9的表現量與活性。
本研究之目的在於釐清金屬暴露與口腔癌發展之間的關係,並了解口腔癌病人中金屬暴露與基質金屬蛋白酶-2及基質金屬蛋白酶-9的相關性,以及探討金屬暴露與基質金屬蛋白酶-2及基質金屬蛋白酶-9之間相關性對於口腔癌之影響為何。 本計劃之研究設計為一個醫院型的個案對照研究,在彰化基督教醫院收集了101位口腔癌病人,以及104位沒有口腔癌病史的對照組病人。在受試者結束定期回診檢查後進行問卷訪談與血樣採集的動作。受訓過之面訪者以問卷調查受試者的人口學資料、生活型態、抽菸、喝酒與吃檳榔習慣、環境與職業暴露史,以及家庭癌症史等相關資料。同時,利用感應耦合電漿質譜儀(ICP-MS)量測血液樣本中鎳(Ni)、鉻(Cr)、砷(As)、鎘(Cd)、汞(Hg)、鉛(Pb)、銅(Cu)、鋅(Zn)等八種重金屬含量。而血漿中之基質金屬蛋白酶-2與基質金屬蛋白酶-9的含量則是使用酵素免疫法(ELISA)來進行定量,至於基質金屬蛋白酶-2的啟動子基因上-1306 C>T與基質金屬蛋白酶-9的啟動子基因上-1562 C>T這兩個點位的基因多型性則是由聚合酶連鎖反應(PCR)進行分析。 第一部分的研究結果顯示,病例組中血液鎳、鉻、銅與鋅的濃度皆高於對照組(P’s < 0.01),而利用居住地區還有抽菸、喝酒與吃檳榔的習慣將受試者進行分層之後,則發現到血液中鎳與鉻的濃度差異比例在病例組與對照組之間是最為明顯的。此外,在控制了可能的干擾因子後,口腔癌與嚼食檳榔(OR = 1.10, 95% CI: 1.06-1.13)、高濃度的血中鎳(OR = 16.2, 95% CI: 6.59-39.8)以及高濃度的血中鉻(OR = 6.80, 95% CI: 2.84-16.3)有顯著的相關性。 第二部分的研究結果發現病例組只有在血漿中基質金屬蛋白酶-9含量上顯著高於對照組(P < 0.0001),而在基質金屬蛋白酶-2含量的部分兩組並無明顯差異。在控制了干擾因子的影響後,觀察到血漿中高含量的基質金屬蛋白酶-9(OR = 1.01, 95% CI: 1.00-1.02)以及嚼食檳榔(OR = 1.08, 95% CI: 1.05-1.11)與口腔癌有顯著的相關。再者,口腔癌病人的血液中鉻濃度與血漿中基質金屬蛋白酶-9含量呈現正相關(P < 0.05)。而且在調整了已知的口腔癌危險因子後,亦可在口腔癌病人中觀察到血中各濃度與血漿中基質金屬蛋白酶-9含量的顯著相關性(P < 0.05)。 第三部分的研究結果則顯示,病例組在基質金屬蛋白酶-2的-1306 C>T點位帶有C/C這種基因型的比例較對照組來的高(P < 0.05),而病例組在基質金屬蛋白酶-9的-1562 C>T點位帶有T這種對偶基因的比例則是顯著的高於對照組(P < 0.05)。不論是在病例組或是對照組,血漿中基質金屬蛋白酶-2的含量都會受到基質金屬蛋白酶-2之-1306 C>T點位的基因多型性所調控(P’s < 0.05);而血中砷與汞的濃度亦會調控到血漿中基質金屬蛋白酶-2的含量(P’s < 0.01)。另一方面,病例組之血漿基質金屬蛋白酶-9的含量會受到基質金屬蛋白酶-9之-1562 C>T點位的基因多型性所調控(P < 0.001);而血中鉻與鋅的濃度亦會調控到血漿中基質金屬蛋白酶-9的含量(P’s < 0.01)。在控制了可能的危險因子之影響後,嚼食檳榔(OR = 18.7, 95% CI: 6.69-52.3)、高濃度的血中鎳(OR = 18.8, 95% CI: 6.93-51.0)、高濃度的血中鉻(OR = 7.47, 95% CI: 2.88-19.4)、高濃度的血漿中基質金屬蛋白酶-9(OR = 3.35, 95% CI: 1.30-8.66)、以及基質金屬蛋白酶-9的-1562 C>T點位為T對偶基因(OR = 3.21, 95% CI: 1.17-8.80)等因素,皆與口腔癌有顯著的相關性。 總結,本研究提供了直接的流行病學證據去加強金屬暴露與口腔癌發展之間可能的相關性,並且支持了血漿中基質金屬蛋白酶-9的含量以及基質金屬蛋白酶-9的-1562 C>T點位上的T對偶基因在口腔癌發展機制中的重要性。此外,目前的結果更顯示,鉻暴露調控血漿中基質金屬蛋白酶-9含量的能力是其與口腔癌相關聯的一種可能解釋方向。整體而言,本研究提供了環境金屬污染與基質金屬蛋白酶之間對於口腔癌發展之影響的證據,有助於未來進一步了解口腔癌的成因,進而改善口腔癌的健康風險。 | zh_TW |
| dc.description.abstract | Soil metal contamination has been found over the past two decades in Chaughua County, which is located in central Taiwan. Wastewater from local metal-related industries was suspected to be the main source of soil metal pollution. Moreover, Changhua County has a high prevalence of oral cancer that could not be explained by the well-known potential risk factors of oral cancer, and some distinctive oral cancer features were observed in this area. Previous occupational and ecological studies implied that there was a possible association between metal exposure and oral cancer development. Matrix metalloproteinases (MMPs), a family of metal-dependent proteolytic enzymes, were associated with the potential invasion and metastasis of some tumors, and the gene expressions and enzyme activities of MMP-2 and MMP-9 were reported to be correlated with oral cancer development. In addition, cellular level experiments and epidemiological studies indicated that the metal exposure might increase the expression and activity of MMP-2 and MMP-9.
The aim of this study was therefore to elucidate the relationship between metal exposure and oral cancer development, the correlations between metal exposure and MMP-2 and MMP-9 in oral cancer patients, and the effects of the associations between metal exposure and MMP-2 and MMP-9 on oral cancer development. A hospital-based case-control study was conducted with 101 oral cancer patients and 104 control patients without a previous history of oral cancer from Changhua Christian Hospital (CCH). Questionnaire administration and blood sample collection were implemented after the study subjects’ regular return clinic visits. A well-trained interviewer administered the questionnaire to collect study subjects’ demographic information, lifestyle information, smoking history, history of alcohol use, betel quid chewing history, environmental and occupational exposure history, and family history of cancer. Trace levels of several metals, including nickel (Ni), chromium (Cr), arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), copper (Cu), and zinc (Zn), in blood samples were determined by inductively coupled plasma mass spectrometry. The amounts of MMP-2 and MMP-9 in the plasma samples were quantified by enzyme-linked immunosorbent assays (ELISA), and the genetic polymorphisms of the MMP-2 promoter gene at -1306 C>T and the MMP-9 promoter gene at -1562 C>T were analyzed by polymerase chain reactions (PCR). The results of the first part of this study showed that the blood nickel, chromium, copper, and zinc concentrations were higher in the oral cancer cases than in the controls (all P’s < 0.01) and that the differences in concentration between the cases and controls were most significant for blood-Ni and blood-Cr levels after being stratified by participants’ residential locations and smoking, alcohol drinking, and betel quid chewing history. Additionally, oral cancer was significantly associated with betel quid chewing (OR = 1.10, 95% CI: 1.06-1.13), high levels of blood-Ni (OR = 16.2, 95% CI: 6.59-39.8), and high levels of blood-Cr (OR = 6.80, 95% CI: 2.84-16.3) after controlling for potential confounders. The results of the second part of this study indicated that only the plasma MMP-9 levels, and not MMP-2 levels, of the cases were significantly higher than those of controls (P < 0.0001) and that oral cancer was significantly associated with MMP-9 plasma levels (OR = 1.01, 95% CI: 1.00-1.02) and betel quid chewing (OR = 1.08, 95% CI: 1.05-1.11) after adjusting for the confounding factors. In addition, blood chromium level was positively correlated with plasma MMP-9 level in oral cancer patients (P < 0.05), and significant associations between blood chromium level and plasma MMP-9 level were observed in oral cancer patients after adjusting for the known risk factors for oral cancer (P < 0.05). The results of the third part of this study demonstrated that the C/C genotype frequency of MMP-2 -1306 C>T and the T allele frequency of MMP-9 -1562 C>T were higher in the oral cancer cases than in the controls (all P’s < 0.05). The plasma MMP-2 levels were modified not only by the polymorphisms of MMP-2 -1306 C>T in both the cases and controls (all P’s < 0.05) but also by the blood arsenic and mercury levels (all P’s < 0.01); the plasma MMP-9 levels were regulated not only by the polymorphisms of MMP-9 -1562 C>T in cases (P < 0.001) but also by the blood chromium and zinc levels (all P’s < 0.01). After controlling for potential risk factors, oral cancer was found to be significantly associated with betel quid chewing (OR = 18.7, 95% CI: 6.69-52.3), high levels of blood-Ni (OR = 18.8, 95% CI: 6.93-51.0), high levels of blood-Cr (OR = 7.47, 95% CI: 2.88-19.4), high levels of plasma-MMP-9 (OR = 3.35, 95% CI: 1.30-8.66), and the T allele of MMP-9 -1562 C>T (OR = 3.21, 95% CI: 1.17-8.80). In conclusion, this study provided direct epidemiological evidence that strengthens the possible association between metal exposure and oral cancer development and that underscores the importance of plasma MMP-9 levels and the T allele of MMP-9 -1562 C>T in the mechanism of oral cancer development. Moreover, the present results implied that chromium exposure, as a result of its regulation of plasma MMP-9 levels, has a possible role in the pathogenesis of oral cancer. On the whole, this study described the possible relationship between personal environmental metal exposure and MMPs levels in the development of oral cancer; these findings might warrant further study to reduce the risk of oral cancer in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:43:34Z (GMT). No. of bitstreams: 1 ntu-101-F93841005-1.pdf: 2931212 bytes, checksum: bd068e8d23af8e5a58b78f1a4db510d0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 摘要 I Abstract III 目錄 VII 圖目錄 XI 表目錄 X Chapter 1. Introduction 1 1.1. Oral Cancer 1 1.2. Oral Cancer in Changhua County 1 1.3. Metal Pollution in Changhua County 2 1.4. Metal Toxicity 3 1.5. Metal and Oral Cancer 5 1.6. Matrix Metalloproteinases 5 1.7. Matrix Metalloproteinases and Oral Cancer 6 1.8. Metal and Matrix Metalloproteinases 7 Chapter 2. Hypotheses and Study Goals 9 2.1. Study Hypotheses 9 2.2. Study Goals 9 Chapter 3. Materials and Methods 11 3.1. Possible Association between Nickel and Chromium and Oral Cancer: A Case-Control Study in Central Taiwan 11 3.1.1. Study areas and subjects 11 3.1.2. Questionnaire administration 12 3.1.3. Collection and analysis of blood samples 13 3.1.4. Statistical analysis 14 3.2. The Association between Blood Chromium and Elevated Plasma Matrix Metalloproteinase-9 in Oral Cancer Patients 15 3.2.1. Study subjects 15 3.2.2. Questionnaire administration 15 3.2.3. Blood sample collection 15 3.2.4. Metal determination 15 3.2.5. Enzyme-linked immunosorbent assay 15 3.2.6. Statistical analysis 15 3.3. Correlation of Matrix Metalloproteinases Polymorphisms, Matrix Metalloproteinases Enzyme Activities, and Metal Levels of Oral Cancer Patients 17 3.3.1. Study population 17 3.3.2. Questionnaire administration 17 3.3.3. Blood sample collection and pretreatment 17 3.3.4. Metal measurement 17 3.3.5. Enzyme-linked immunosorbent assay 17 3.3.6. Polymorphism analysis 17 3.3.7. Statistical analysis 18 Chapter 4. Results and Discussion 21 4.1. Possible Association between Nickel and Chromium and Oral Cancer: A Case-Control Study in Central Taiwan 21 4.1.1. Results 21 4.1.1.1. Demographics of cases and controls 21 4.1.1.2. Blood metal levels by group 21 4.1.1.3. Blood metal levels by area 22 4.1.1.4. Blood metal levels by oral cancer risk factors 25 4.1.1.5. Risk factors for oral cancer 28 4.1.2. Discussion 32 4.1.2.1. Metal pollution and oral cancer in Changhua County 32 4.1.2.2. Influential metals for oral cancer 32 4.1.2.3. Elimination of the effects of confounding factors 33 4.1.2.4. The role of chromium and nickel in the development of oral caner 34 4.1.2.5. Limitations 35 4.1.2.6. Summary 37 4.2. The Association between Blood Chromium and Elevated Plasma Matrix Metalloproteinase-9 in Oral Cancer Patients 39 4.2.1. Results 39 4.2.1.1. Characteristics of cases and controls 39 4.2.1.2. Distribution of plasma MMP levels 41 4.2.1.3. Association between MMP enzyme and oral cancer 43 4.2.1.4. Association between MMP enzyme and metals 44 4.2.2. Discussion 47 4.2.2.1. Alternative viewpoint for the metal exposure on oral cancer 47 4.2.2.2. Association between chromium and MMP-9 47 4.2.2.3. The significant role of MMP-9 enzyme on oral cancer 48 4.2.2.4. Association between MMP enzyme and oral cancer risk factors 49 4.2.2.5. Limitations 50 4.2.2.6. Summary 50 4.3. Correlation of Matrix Metalloproteinases Polymorphisms, Matrix Metalloproteinases Enzyme Activities, and Metal Levels of Oral Cancer Patients 51 4.3.1. Results 51 4.3.1.1. Distributions of MMP-2 and MMP-9 genotypes in cases and controls 51 4.3.1.2. Effects of MMP genotypes on MMP enzyme activity 54 4.3.1.3. Correlations of plasma MMPs with blood metal by MMPs genotypes 54 4.3.1.4. Potential risk factors for oral cancer 57 4.3.2. Discussion 60 4.3.2.1. The role of MMP-9 -1562 C>T on oral cancer 60 4.3.2.2. The role of MMP-9 enzyme activity on oral cancer 60 4.3.2.3. The possible pathogenesis of chromium exposure on oral cancer 61 4.3.2.4. Limitations 62 4.3.2.5. Summary 63 Chapter 5. Conclusions 65 References 67 Appendix 1. Form of questionnaire. 2. Tzu-Hsuen Yuan, Ie-Bin Lian, Kuo-Yang Tsai, Tsun-Kuo Chang, Chi-Ting Chiang, Che-Chun Su, Yaw-Huei Hwang. Possible association between nickel and chromium and oral cancer: A case-control study in central Taiwan. Science of the Total Environment. 2011;409: 1046-52. 表目錄 Table 1. Characteristics of oral cancer cases and controls. 22 Table 2. Distributions of metal concentrations in cases and controls by exposure levels of oral cancer risk factors. 26 Table 3. Correlation matrix of oral cancer risk factors and metal levels in blood samples by study group. 27 Table 4. Unadjusted odds ratios for potential risk factors for oral cancer 29 Table 5. Stepwise multiple logistic regression for oral cancer risk factors. 31 Table 6. Demographics and characteristics of oral cancer cases and controls. 40 Table 7. Distributions of MMP levels in plasma samples of oral cancer cases and controls by study variables. 42 Table 8. Multiple logistic regression model for oral cancer risk factors. 44 Table 9. Correlation of plasma MMP levels with blood metal levels and oral cancer risk factors in cases and controls. 46 Table 10. Multiple linear regression analysis for age, metal levels and oral cancer risk factors, on MMPs among oral cancer cases. 46 Table 11. The MMP-2 and MMP-9 genotype frequencies in oral cancer patients and controls. 52 Table 12. Distributions of the MMP-2 and MMP-9 genotypes in oral cancer cases and controls according to the study variables. 53 Table 13. Unadjusted odds ratios for MMP items in oral cancer. 58 Table 14. Stepwise multiple logistic regression model for the potential risk factors of oral cancer. 59 圖目錄 Figure 1. The locations of study areas in Taiwan, with Changhua County further divided into the north, central, and south areas. 12 Figure 2. Comparison of the metal levels in the blood samples of cases and controls by area. 24 Figure 3. Box plot of plasma MMP levels of oral cancer cases and controls. 43 Figure 4. Box plot of blood metal levels of oral cancer cases and controls. 45 Figure 5. Comparison of the plasma MMP levels in cases and controls by MMP genotype. 54 Figure 6. Correlation between plasma MMP-2 levels and blood metal levels by MMP-2 genotype. 55 Figure 7. Correlation between plasma MMP-9 levels and blood metal levels by MMP-9 genotype. 56 | |
| dc.language.iso | en | |
| dc.subject | 彰化 | zh_TW |
| dc.subject | 基質金屬蛋白酶 | zh_TW |
| dc.subject | 台灣 | zh_TW |
| dc.subject | 鎳 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 鉻 | zh_TW |
| dc.subject | Taiwan | en |
| dc.subject | nickel | en |
| dc.subject | chromium | en |
| dc.subject | matrix metalloproteinases | en |
| dc.subject | Changhua | en |
| dc.subject | oral cancer | en |
| dc.title | 鎳與鉻暴露以及基質金屬蛋白酶之相關性對口腔癌的影響 | zh_TW |
| dc.title | Effects of the Association between Nickel and Chromium Exposure and Matrix Metalloproteinases on Oral Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭育良,張尊國,蘇哲俊,連怡斌 | |
| dc.subject.keyword | 口腔癌,鎳,鉻,基質金屬蛋白酶,彰化,台灣, | zh_TW |
| dc.subject.keyword | oral cancer,nickel,chromium,matrix metalloproteinases,Changhua,Taiwan, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-01-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
