Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66554
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范正成(Jen-Chen Fan)
dc.contributor.authorChien-Lin Huangen
dc.contributor.author黃建霖zh_TW
dc.date.accessioned2021-06-17T00:42:34Z-
dc.date.available2012-02-16
dc.date.copyright2012-02-16
dc.date.issued2012
dc.date.submitted2012-01-13
dc.identifier.citation1. 米倉亮三、廖洪鈞、林英堂 (2002),“恆久性灌漿材料與其灌漿砂土之動態行為”,地工技術,第93期:5-12頁。
2. 地基處理手冊編寫委員會 (1988),“地基礎理手冊”,中國建築工業出版社。
3. 吳泰熙 (1997),“以禁忌演算法則求解推銷員旅行問題”,大葉學報,第六卷,第1期:87-99頁。
4. 施國琅(2008),“超微粒水泥漿體滲透灌漿與灌注量之研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。
5. 倪至寬、林任峰(2006),“超細水泥漿液滲透灌漿之研究”,臺北科技大學學報,95年09號。
6. 徐至鈞 (2005),“新編建築地基處理工程手冊”,中國建材工業出版社。
7. 徐名顯 (2007),“爐石添加量對超微粒水泥漿體基礎物理性質影響之研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。
8. 張永佳 (2009),“應用混合式禁忌搜尋法於整合生產與配送之排程問題”,碩士論文,國立交通大學工業工程與管理研究所。
9. 黃亦敏、李維峰、林平全、張東源 (2002),“高細度地質改良材料研發與案例應用分析”,地工技術,第93期:13-22頁。
10. 黃兆龍 (2003),“高性能混凝土理論與實務”,台北:詹氏書局。
11. 黃建霖、范正成、楊文仁 (2007),“超微粒水泥灌漿材料於粉土質砂層之應用”,地工技術 ,第111期:71-82頁。
12. 黃室毓 (2008),“地下水資源永續利用規劃與管理模式”,碩士論文,國立台灣大學生物環境系統工程學研究所。
13. 廖洪鈞 (1994),“土壤灌漿於水位下管幕地下道工程之應用”,地工技術,第47期:35-54頁。
14. 陳正勳、楊式昌、周功台、陳福勝(2001),“既有跨越橋梁基礎之耐震補強工法探討”,中華技術雜誌,第52期。
15. Akbulut, S. and Saglamer, A. (2002), “Estimating the Groutability of Granular Soil: A New Approach”, Tunnelling and Underground Space Technology, Vol. 17, No. 4, pp. 371-380.
16. Axelsson, M., Gustafson G. and Fransson, A. (2009), “Stop Mechanism for Cementitious Grouts at Different Water-to-cement Ratio”, Tunnelling and Underground Space Technology, 24, pp.390-397.
17. Burwell, E.B. (1958), “Cement and Clay Grouting of Foundations”, Practice of the corps of engineering, J. Soil Mech. Foundation Div., ASCE 84, 1551/1-1551/22.
18. BS EN 12715 (2000), “Execution of Special Geotechnical Work”, Grouting. British-Adopted European Standard, pp. 1-56.
19. Cattell, R.B. (1966), “The Scree Test for the Number of Factors”, Multivariate Behavioral Research, Vol. 1, pp. 629-637.
20. Chengzhi, Z., Aiqin, W. and Mingshu, T. (1996), “The Filling Role of Pozzolanic Material”, Cement and Concrete Research, Vol. 26, No. 6, pp. 943-947.
21. Clarke, W.J., Billard, M.D. and Maan Helal, A.M. (1992), “Ultrafine cement Tests and Dam Test Grouting”, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 626-637.
22. Du, D.Z., and Pardalos, P.M. (1998), “Handbook of Combinational Optimization”, Volume 3.
23. Engineer Manual (1995), “Engineering and Design-Chemical Grouting”, Washington, DC: U.S. Army Corps of Engineers.
24. Glover, F. (1986), “Future Paths for Integer Programming and Links to Artificial Intelligence”, Computers and Operations Research, Vol. 13, pp. 533-549.
25. Glover, F., (1990), “Tabu Search: A Tutorial”, Interfaces, 20, pp.74-94.
26. Glover, F. and Laguna, M. (1997), “Tabu Search”, Kluwer Academic Publishers, Boston, MA.
27. Maan Helal, A.M., and Krizek, R.J. (1992), “Preferred Orientation of Pore Structure in Cement-grouted Sand”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication. No. 30, pp. 526-540.
28. Henn, R.W. (1996), “Practical Guide to Grouting of Underground Structures,” New York: ASCE Press, pp. 6-49.
29. Herndon, J. and Lenahan, T. (1976), “Grouting in Soils”, Vol. 2: Design and Operations Manual, Federal Highway Administration, Halliburton Services, Duncan, Oklahoma, Technical Report.
30. Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables into Principal Components”, Journal of Educational Psychology 24 417 441, 498 520. Z.
31. Hu, S., Guan, X. and Ding, Q. (2002), “Research on Optimizing Components of Microfine High-performance Composite Cementitious Materals”, Cement and Concrete Research, Vol 32, pp. 1871-1875.
32. Huang, C.L., Fan, J.C., Liao, K.W., Huang, S.H. and Lien, T.H. (2010), “Predicting the Groutability of Sandy Silt Soils for Microfine Cement Grouts via BPNN”, Tunnelling and Underground Space Technology. (Under review)
33. Incecik, M., and I. Ceren. (1995), “Cement Grouting Model Tests”, Bulletin of The technical University of Istanbul, Vol.:48, No.2, pp. 305-317.
34. Kaiser, H. F. (1960), “The Application of Electronic Computers to Factor Analysis”, Educational and Psychological Measurement, Vol. 20, pp. 141-151.
35. Khaled S. and Al-Sultan (1995), “Tabu Search Approach to the Clustering Problem”, Pattern Recognition, Vol. 28, No. 9, pp. 1443-1451.
36. Khayat, K.H. and Gaudreault, M. (1997), “High-performance Cement Grout for Underwater Crack Injection”, Can. J. Civ. Eng., Vol. 24:405-418.
37. Krizek, R.J., Liao, H.J. and Borden, R.H. (1992), “Mechanical Properties of Microfine Cement/Sodium Silicate Grouted sand”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 688-699.
38. Kruskal, W.H. and Wallis, W.A. (1952), “Use of Ranks in One-criterion Variance Analysis”, J. Amer. Statist. Assoc. Vol. 47, pp. 583-621.
39. Kutzner, C. (1996). “Grouting of Rock and Soil”, A. A. Balkema, Rotterdam.
40. Liao, H.J., Borden, R.H. and Krizek, R.J. (1992), “Microfine Cement/Sodium Silicate Grout”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 676-687.
41. Liao, K.W., Fan, J.C., and Huang, C.L. (2011) “An Artificial Neural Network for Groutability Prediction of Permeation Grouting with Microfine Cement Grouts”, Computers and Geotechnics, Vol. 38: pp. 978-986.
42. Maag, E. (1938), “Ueber die Verfestigung und Dictung des Bangrundes (injektionen)”, Course on soil mech., Zurich Tech. School.
43. Mollamahmutoglu, M., and Yilmaz, Y. (2011), “Engineering Properties of Medium-to-Fine Sands Injected with Microfine Cement Grout”, Marine Georesources and Geotechnology, Vol. 29, pp.95-109.
44. Naudts, A. and Landry, E. (2003), “New On-site Wet Milling Technology for the Preparation of Ultrafine Cement-based Grouts”, American Society of Civil Engineering, Vol. 127, pp. 1200-1207.
45. Ozgurel, H. G. and Vipulanandan, C. (2005), “Effect of Grain Size and Distribution on Permeability and Mechanical Behavior of Acrylamide Grouted Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No.12, pp.1457-1465.
46. Paoli, D., Bosco, B., Granata, R. and Bruce, D.A. (1992), “Fundamental Observations on Cement Based Grouts (2): Microfine Cements and the Cemill Process”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication. No. 30, pp. 486-499.
47. Pearson, K. (1901). “On Lines and Planes of Closest Fit to Systems of Points in Space”, Philosophical Magazine, Vol. 2, No. 6, pp. 559–572.
48. Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A. and Haick, H. (2009) “Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles”, Nature Nanotechnology, Vol. 4, pp. 669-673.
49. Perret, S., Palardy, D. and Ballivy, G. (2000), “Rheological Behavior and Setting Time of Microfine Cement-Based Grouts”, ACI Materiala Journal, July-August, 2000, pp. 472-477.
50. Perret, S., Khayat, K.H., Gagnon, E. and Rhazi, J. (2002), “Repair of 130-Year Old Masonry Bridge using High-Performance Cement Grout”, Journal of Bridge Engineering, Vol. 7, No.1, January 1, 2002. ASCE, ISSN, pp. 31-38.
51. Reschke, A.E. (2000), “The Development of Colloidal Mixer Based CRF Systems”, (Presented at MINEFILL 98, Brisbane, Australia, 1998) Rev.Aug.2000. Page 11.
52. Saiyouri, N., Bouasker, M. and Khelidj, A. (2008), “Gas Permeability Measurement on Injected Soils with Cement Grout” Cement and Concrete Research, Vol. 38,No.1 , pp.95-103.
53. Schwarz, L.G. and Krizek, R.J. (1992), “Effect of Mixing on Rheological Properties of Microfine Cement Grout”, ASCE Grouting, Soil Improvement and Geosynthetics, pp. 512-525.
54. Schwarz, L.G. and Krizek, R.J. (2006), “Hydrocarbon Residuals and Containment in Microfine Cement Grouted Sand”, Journal of Materials in Civil Engineering, Vol. 18, No.2, pp. 214-228.
55. Schwarz, L.G. and Chirumalla, M. (2007), “Effect of Injection Pressure on Permeability and Strength of Microfine Cement Grouted Sand”, Grouting for Ground Improvement: GSP 168 Geo-Denver 2007: New Peaks in Geotechniques.
56. Soga, K., Au, S.K.A., Jafari, M.R., Bolton, M.D. (2004), “Laboratory Investigation of Multiple Grout Injections into Clay” Geotechnique, Vol. 54, No. 2, pp. 81–90.
57. Stephanie, P., Danielle, P. and Gerard, B. (2000), “Rheological Behavior and Setting Time of Microfine Cement-based Grouts”, ACI Materials Journal, Vol. 97, pp. 472-478.
58. Tekin, E. and Akbas, S.O. (2010), “Artificial Neural Networks Approach for Estimating the Groutability of Granular Soils with Cement-Basis Grouts” Bull Eng Geol Environ. Vol. 70: pp. 153-161.
59. Terzaghi, K. and Peck, R.B. (1948), “Soil Mechanics in Engineering Practice”, 1st edition, John Wiley & Sons, Inc, N.Y.
60. Thiessen Team (2000), “The Development of Colloidal Mixer Based CRF Systems”, Reschke, A. E. The Development of Colloidal Mixer Based CRF Systems (present at MINEFILL’98, Brisbane, Australia, 1988) Rev. Aug. 2000.
61. Tung, C.P., and Chou, C.A. (2002), “Application of Tabu Search to Groundwater Parameter Zonation”, Journal of American Water Resources Association, Vol. 38, No. 4, pp.1115-1125.
62. Zebovitz, S., Krizek, R.J. and Atmatzidis, D.K. (1989), “Injection of Fine Sands with Very Fine Cement Grout”, Journal of Geotechnical Engineering, No. 12, pp. 1717-1733.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66554-
dc.description.abstract本研究的目的是要建構一個粉土質砂層超微粒水泥滲透灌漿可灌性的預測公式。因為本研究之粉土質砂層富含較高的細粒料含量以及所使用的超微粒水泥粒徑遠小於傳統的卜特蘭水泥,遂傳統可灌性相對粒徑比經驗公式無法有效的預測。雖然應用倒傳遞與幅狀基底函數類神經網路亦是一個能夠預測可灌性的方法,然因其無法提供一個明確的預測公式,所以於實際工程應用上有其限制。因此,本研究藉由所蒐集之240筆現地資料以啟發式演算法(禁忌演算法),建構一可灌性之預測公式。除了參考傳統相對粒徑比可灌性經驗公式的格式外,土壤有效粒徑(d10)、土壤粒徑(d15)、細粒料含量(FC)與水灰比(W/C) 4個影響可灌性的因子亦納入考慮,其預測準確率可高達94.58%。再者,由本研究可灌性預測公式之良好預測結果顯示,應用禁忌演算法所建立之可灌性預測公式為相當可行的方法。此外,本研究所建構之預測公式與傳統相對粒徑比可灌性經驗公式有相似的格式,將更方便於工程師之使用也更易於實際工程上的普遍應用。zh_TW
dc.description.abstractThe goal of this study is to provide an accurate formula to predict the groutability (N) of silty sand soils using microfine cement grouts in a permeation grouting. Because the fines content (FC) of the silty sand soils studied is relatively high, and the size of the grouts used is significantly smaller than the Portland cement, the existing empirical formulas cannot deliver a promising prediction of N. Artificial neural networks such as BPNN or RBFNN are alternative tools used to predict N. However, ANNs do not provide an explicit formula, which creates an obstacle for practical engineers. Thus, a heuristic algorithm (the Tabu search, TS) was used to build the prediction formula. A total of 240 in-situ data samples were analyzed to ensure the accuracy of the proposed formula. The format of the existing empirical formula, which is commonly used in practice, was adopted in the proposed TS-based formula. Four parameters were considered in our TS models: the effective soil particle size (d10), the soil particle size (d15), the water-to-cement ratio (W/C) and the FC. The prediction accuracy of the TS-based formula was approximately 94.58%. With such a promising result, it is evident that the proposed formula is a suitable tool for predicting N. Because the proposed formula has a similar format to that of formulas that are typically used, the proposed approach can be implemented readily in practical engineering settings.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:42:34Z (GMT). No. of bitstreams: 1
ntu-101-D95622008-1.pdf: 13268760 bytes, checksum: de0e38e94268a3b98e39ec12b9f05c91 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
謝誌 I
摘要 II
ABSTRACT III
目 錄 IV
圖 目 錄 VI
表 目 錄 VIII
符號表 X
第一章 研究動機與目的 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1超微粒水泥研磨及攪拌技術發展 5
2.1.1超微粒水泥研磨技術發展 5
2.1.2超微粒水泥攪拌技術發展 6
2.2水泥相關材料之應用與成分配比的影響 8
2.1.1水泥相關材料之應用 8
2.1.2水泥成分配比的影響 10
2.3 滲透灌漿工法 16
2.3.1 灌漿材料的選擇 19
2.3.2 室內滲透灌漿試驗 22
2.4 既有的滲透灌漿可灌性評估方法 26
2.5 主成分分析 36
2.6 禁忌演算法 36
第三章 研究方法 40
3.1 現地灌漿資料 40
3.1.1資料樣本 40
3.1.2灌漿材料 44
3.1.3灌漿方式 49
3.2 可灌性預測分析 49
3.2.1敘述性統計及主成分分析 51
3.2.2 傳統可灌性經驗公式 54
3.2.3類神經網路可灌性的預測模式 56
3.2.4超微粒水泥滲透灌漿可灌性預測公式 57
3.2.4禁忌演算法 (Tabu Search) 58
3.3推論性統計 67
第四章 結果與討論 71
4.1 敘述性統計與可灌性因子的檢定 71
4.2 主成分分析 75
4.3 傳統相對粒徑比之可灌性經驗公式 87
4.4 超微粒水泥滲透灌漿可灌性預測公式 90
4.4.1 以禁忌演算法建立預測公式 94
4.4.2 不同資料組合的敏感度分析及推論統計檢定 110
4.5 類神經網路可灌性的預測模式 124
4.6 現地資料分析結果 127
4.7 綜合比較 133
第五章 結論與建議 134
5.1 結論 134
5.2 後續建議 135
附錄 143
附錄一:現地資料 144
附錄二:SAS 9.2 PROC UNIVARIATE輸出結果 148
附錄三:SAS 9.2 PROC MANOVA輸出的整理結果(可灌與不可灌資料) 162
附錄四:SAS 9.2 PROC NPAR1WAY輸出的整理結果(可灌與不可灌資料) 164
dc.language.isozh-TW
dc.subject可灌性zh_TW
dc.subject禁忌演算法zh_TW
dc.subject超微粒水泥zh_TW
dc.subject滲透灌漿zh_TW
dc.subjectpermeation groutingen
dc.subjectgroutabilityen
dc.subjecttabu searchen
dc.subjectmicrofine cementen
dc.title利用啟發式演算法建立可灌性預測公式zh_TW
dc.titleUsing A Heuristic Algorithm to Build A Groutability Formulaen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳榮河(Rong-Her Chen),林炳森(Ping-Sen Lin),林宏達(Horn-Da Lin),王藝峰(Yi-Fung Wang)
dc.subject.keyword禁忌演算法,可灌性,超微粒水泥,滲透灌漿,zh_TW
dc.subject.keywordtabu search,groutability,microfine cement,permeation grouting,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2012-01-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
12.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved