Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭育良
dc.contributor.authorBing-Yu Chenen
dc.contributor.author陳秉鈺zh_TW
dc.date.accessioned2021-06-17T00:42:11Z-
dc.date.available2017-03-02
dc.date.copyright2012-03-02
dc.date.issued2012
dc.date.submitted2012-01-16
dc.identifier.citation1. Kao CC, Huang JL, Ou LS, et al. The prevalence, severity and seasonal variations of asthma, rhinitis and eczema in Taiwanese schoolchildren. Pediatr Allergy Immunol 2005;16:408-415.
2. Bernstein JA, Alexis N, Barnes C, et al. Health effects of air pollution. J Allergy Clin Immunol 2004;114:1116-1123.
3. Environmental Protection Administration, Taiwan. Taiwan Environmental Data Warehouse. (http://edw.epa.gov.tw) (Accessed September 27, 2011)
4. Environmental Protection Administration, Taiwan. Air Quality Standard. (http://taqm.epa.gov.tw/taqm/en/b0206.aspx). (Accessed September 27, 2011).
5. United States Environmental Protection Agency. National Ambient Air Quality Standards. (http://epa.gov/air/criteria.html). (Accessed September 27, 2011).
6. Burge HA, Rogers CA. Outdoor allergens. Environ Health Perspect 2000;108:653-659.
7. Beasley R, Keil U, von Mutius E, et al. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet 1998;351:1225-1232.
8. Guo YLL, Lin YC, Sung FC, et al. Climate, traffic-related air pollutants, and asthma prevalence in middle-school children in Taiwan. Environ Health Perspect 1999;107:1001-1006.
9. Lee YL, Shaw CK, Su HJ, et al. Climate, traffic-related air pollutants and allergic rhinitis prevalence in middle-school children in Taiwan. Eur Respir J 2003;21:964-970.
10. Asher MI, Montefort S, Bjorksten B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368:733-743.
11. Reed SD, Lee TA, McCrory DC. The economic burden of allergic rhinitis - A critical evaluation of the literature. Pharmacoeconomics 2004;22:345-361.
12. Bousquet J, van Cauwenberge P, Khaltaev N, et al. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 2001;108:S147-S334.
13. McConnell R, Berhane K, Gilliland F, et al. Prospective study of air pollution and bronchitic symptoms in children with asthma. Am J Respir Crit Care Med 2003;168:790-797.
14. Vichit-Vadakan N, Ostro BD, Chestnut LG, et al. Air pollution and respiratory symptoms: Results from three panel studies in Bangkok, Thailand. Environ Health Perspect 2001;109:381-387.
15. Norris G, YoungPong SN, Koenig JQ, et al. An association between fine particles and asthma emergency department visits for children in Seattle. Environ Health Perspect 1999;107:489-493.
16. Stieb DM, Beveridge RC, Brook JR, et al. Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. J Expo Anal Environ Epidemiol 2000;10:461-477.
17. Ostro B, Roth L, Malig B, et al. The Effects of Fine Particle Components on Respiratory Hospital Admissions in Children. Environ Health Perspect 2009;117:475-480
18. Delfino RJ, Coate BD, Zeiger RS, et al. Daily asthma severity in relation to personal ozone exposure and outdoor fungal spores. Am J Respir Crit Care Med 1996;154:633-641.
19. Atkinson RW, Strachan DP, Anderson HR, et al. Temporal associations between daily counts of fungal spores and asthma exacerbations. Occup Environ Med 2006;63:580-590.
20. Cakmak S, Dales RE, Burnett RT, et al. Effect of airborne allergens on emergency visits by children for conjunctivitis and rhinitis. Lancet 2002;359:947-948.
21. Dales RE, Cakmak S, Burnett RT, et al. Influence of ambient fungal spores on emergency visits for asthma to a regional children's hospital. Am J Respir Crit Care Med 2000;162:2087-2090.
22. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J 2005;26:319-338.
23. Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, et al. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. Environ Health Perspect 2008;116:832-838.
24. Delfino RJ, Staimer N, Gillen D, et al. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect 2006;114:1736-1743.
25. Gotschi T, Heinrich J, Sunyer J, et al. Long-term effects of ambient air pollution on lung function - A review. Epidemiol 2008;19:690-701.
26. Lewis TC, Robins TG, Dvonch JT, et al. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Perspect 2005;113:1068-1075.
27. Liu L, Poon R, Chen L, et al. Acute Effects of Air Pollution on Pulmonary Function, Airway Inflammation, and Oxidative Stress in Asthmatic Children. Environ Health Perspect 2009;117:668-674.
28. Neas LM, Dockery DW, Burge H, et al. Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. Am J Epidemiol 1996;143:797-807.
29. Kindt TJ, Osborne B, Goldsby RA. Kuby Immunology. New York: W. H. Freeman and Company, 2006.
30. Remick DG. Interleukin-8. Crit Care Med 2005;33:S466-S467.
31. Behndig AF, Mudway IS, Brown JL, et al. Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respir J 2006;27:359-365.
32. Kafoury RM, Pryor WA, Squadrito GL, et al. Induction of inflammatory mediators in human airway epithelial cells by lipid ozonation products. Am J Respir Crit Care Med 1999;160:1934-1942.
33. Takizawa H. Diesel exhaust particles and their effect on induced cytokine expression in human bronchial epithelial cells. Current Opinion in Allergy and Clinical Immunology 2004;4:355-358.
34. Smith KR, Veranth JM, Kodavanti UP, et al. Acute pulmonary and systemic effects of inhaled coal fly ash in rats: Comparison to ambient environmental particles. Toxicol Sci 2006;93:390-399.
35. Wagner JG, Van Dyken SJ, Wierenga JR, et al. Ozone exposure enhances endotoxin-induced mucous cell metaplasia in rat pulmonary airways. Toxicol Sci 2003;74:437-446.
36. Murtoniemi T, Nevalainen A, Suutari M, et al. Induction of cytotoxicity and production of inflammatory mediators in RAW264.7 macrophages by spores grown on six different plasterboards. Inhal Toxicol 2001;13:233-247.
37. Roponen M, Toivola M, Meklin T, et al. Differences in inflammatory responses and cytotoxicity in RAW264.7 macrophages induced by Streptomyces anulatus grown on different building materials. Indoor Air 2001;11:179-184.
38. Hiltermann JTN, Lapperre TS, van Bree L, et al. Ozone-induced inflammation assessed in sputum and bronchial, lavage fluid from asthmatics: A new noninvasive tool in epidemiologic studies on air pollution and asthma. Free Radic Biol Med 1999;27:1448-1454.
39. Nightingale JA, Rogers DF, Barnes PJ. Effect of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax 1999;54:1061-1069.
40. Salvi S, Blomberg A, Rudell B, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 1999;159:702-709.
41. Jorres RA, Holz O, Zachgo W, et al. The effect of repeated ozone exposures on inflammatory markers in bronchoalveolar lavage fluid and mucosal biopsies. Am J Respir Crit Care Med 2000;161:1855-1861.
42. Salvi SS, Nordenhall C, Blomberg A, et al. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am J Respir Crit Care Med 2000;161:550-557.
43. Weinmann GG, Liu MC, Proud D, et al. Ozone exposure in humans: inflammatory, small and peripheral airway responses. Am J Respir Crit Care Med 1995;152:1175-1182.
44. Graham DE, Koren HS. Biomarkers of inflammation in ozone-exposed humans. Comparison of the nasal and bronchoalveolar lavage. Am Rev Respir Dis 1990;142:152-156.
45. Kopp MV, Ulmer C, Ihorst G, et al. Upper airway inflammation in children exposed to ambient ozone and potential signs of adaptation. Eur Respir J 1999;14:854-861.
46. Lee YL, Lin YC, Hsiue TR, et al. Indoor and outdoor environmental exposures, parental atopy, and physician-diagnosed asthma in Taiwanese schoolchildren. Pediatrics 2003;112:E389-E395.
47. Han YY, Lee YL, Guo YLL. Indoor environmental risk factors and seasonal variation of childhood asthma. Pediatr Allergy Immunol 2009;20:748-756.
48. Roberts G, Hurley C, Lack G. Development of a quality-of-life assessment for the allergic child or teenager with multisystem allergic disease. J Allergy Clin Immunol 2003;111:491-497.
49. Bureau of Food Hygiene, Department of Health, Taiwan. The definition of child and adolescent obesity. (http://food.fda.gov.tw/files/HealthChildFatDefinition.jpg) (Accessed April 9, 2011).
50. Koren HS, Hatch GE, Graham DE. Nasal lavage as a tool in assessing acute inflammation in response to inhaled pollutants. Toxicol 1990;60:15-25.
51. Lee CT, Chuang MT, Chan CC, et al. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmos Environ 2006;40:3409-3418.
52. Rogers CA, Muilenberg M. Pan-American Aerobiology Association Standardized Protocols: Comprehensive guidelines for the operation of Hirst-type suction bioaerosol samplers, the Pan American Aerobiology Association [article online]. (www.paaa.org.) (Accessed September 27, 2011).
53. Xepapadaki P, Manios Y, Liarigkovinos T, et al. Association of passive exposure of pregnant women to environmental tobacco smoke with asthma symptoms in children. Pediatr Allergy Immunol 2009;20:423-429.
54. Singh SP, Barrett EG, Kalra R, et al. Prenatal cigarette smoke decreases lung cAMP and increases airway hyperresponsiveness. Am J Respir Crit Care Med 2003;168:342-347.
55. Mandhane PJ, Greene JM, Sears MR. Interactions between breast-feeding, specific parental atopy, and sex on development of asthma and atopy. J Allergy Clin Immunol 2007;119:1359-1366.
56. Martinez FD, Holt PG. Role of microbial burden in aetiology of allergy and asthma. Lancet 1999;354:S12-S15.
57. Sears MR, Greene JM, Willan AR, et al. Long-term relation between breastfeeding and development of atopy and asthma in children and young adults: a longitudinal study. Lancet 2002;360:901-907.
58. Wright AL, Sherrill D, Holberg CJ, et al. Breast-feeding, maternal IgE, and total serum IgE in childhood. J Allergy Clin Immunol 1999;104:589-594.
59. Fredriksson P, Jaakkola N, Jaakkola JJ. Breastfeeding and childhood asthma: a six-year population-based cohort study. BMC Pediatrics 2007;7:39.
60. Fisk WJ, Lei-Gomez Q, Mendell MJ. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 2007;17:284-296.
61. Hardin BD, Kelman BJ, Saxon A. Adverse human health effects associated with molds in the indoor environment. J Occup Environ Med 2003;45:470-478.
62. Lee YL, Li CW, Sung FC, et al. Environmental factors, parental atopy and atopic eczema in primary-school children: a cross-sectional study in Taiwan. Br J Dermatol 2007;157:1217-1224.
63. Wu PC, Su HJ, Lin CY. Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. Sci Total Environ 2000;253:111-118.
64. Wan KS, Yang WN, Wu WF. A Survey of Serum Specific-IgE to Common Allergens in Primary School Children of Taipei City. Asian Pac J Allergy Immunol 2010;28:1-6.
65. Chang FY, Lee JH, Yang YH, et al. Analysis of the Serum Levels of Fungi-Specific Immunoglobulin E in Patients with Allergic Diseases. Int Arch Allergy Immunol 2011;154:49-56.
66. Lee CH, Tang RB, Chung RL. The evaluation of allergens and allergic diseases in children. Journal of Microbiology, Immunology and Infection 2000;33:227-232.
67. Li CS, Wan GH, Hsieh KH, et al. Seasonal variation of house dust mite allergen (Der p 1) in a subtropical climate. J Allergy Clin Immunol 1994;94:131-134.
68. Wu YH, Chan CC, Rao CY, et al. Characteristics, determinants, and spatial variations of ambient fungal levels in the subtropical Taipei metropolis. Atmos Environ 2007;41:2500-2509.
69. Yang YL, Chen SH. An investigation of airborne pollen in Taipei City, Taiwan, 1993-1994. J Plant Res 1998;111:501-508.
70. Schipper H, Levitt M. Measuring quality of life-risk and benefits. Cancer Treat Rep 1985;69:1115-1125.
71. Scadding GK, Richards DK, Price MJ. Patient and physician perspectives on the impact and management of perennial and seasonal allergic rhinitis. Clin Otolaryngol 2000;25:551-557.
72. Weinmann GG, Bowes SM, Gerbase MW, et al. Response to acute ozone exposure in healthy men. Results of a screening procedure. Am J Respir Crit Care Med 1995;151:33-40.
73. Weinmann GG, Weidenbachgerbase M, Foster WM, et al. Evidence for ozone-induced small-airway dysfunction: lack of menstrual-cycle and gender effects. Am J Respir Crit Care Med 1995;152:988-996.
74. Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res-Fundam Mol Mech Mutagen 2005;592:119-137.
75. Dye JA, Adler KB, Richards JH, et al. Epithelial injury induced by exposure to residual oil fly-ash particles: Role of reactive oxygen species? Am J Respir Cell Mol Biol 1997;17:625-633.
76. Huang SL, Hsu MK, Chan CC. Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. Environ Health Perspect 2003;111:478-482.
77. Valavanidis A, Fiotakis K, Vlachogianni T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J Environ Sci Health C 2008;26:339-362.
78. Frischer T, Studnicka M, Halmerbauer G, et al. Ambient ozone exposure is associated with eosinophil activation in healthy children. Clin Exp Allergy 2001;31:1213-1219.
79. Environmental Protection Administration, Taiwan. Representativeness of monitoring station in Taipei, Taiwan. (http://sta.epa.gov.tw/report/project_87.html). (Accessed September 27, 2011).
80. Brunekreef B, Hoek G, Fischer P, et al. Relation between airborne pollen concentrations and daily cardiovascular and respiratory-disease mortality. Lancet 2000;355:1517-1518.
81. Robinson D, Hamid Q, Bentley A, et al. Activation of CD4+ T cells, increased TH2-type cytokine mRNA expression, and eosinophil recruitment in bronchoalveolar lavage after allergen inhalation challenge in patients with atopic asthma J Allergy Clin Immunol 1993;92:313-324.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66550-
dc.description.abstract前言:空氣汙染暴露為重要的環境議題,而真菌孢子為環境中主要過敏原。人體暴露到空氣汙染與真菌孢子等吸入性過敏原所可能造成之呼吸道健康影響有進行研究加以探討的必要。本研究透過問卷調查,瞭解過敏性呼吸道疾病的季節性發作特性及其可能之個人及環境危害因子,並評估疾病季節性對生活品質的影響。研究亦執行長期追蹤以評估環境空氣汙染與吸入性過敏原暴露對學齡孩童肺功能與鼻腔發炎的影響。
方法:研究以國小及國中學童為對象,經受訪學校及學生父母同意於2007年9月進行學齡孩童呼吸系統健康問卷調查,研究對象就所述問卷可區分為患有氣喘組、患有過敏性鼻炎及健康對照組。患有過敏性呼吸道疾病之學童以主成分分析來區分其疾病的季節發作型態;使用多變項邏輯斯迴歸分析造成過敏性疾病季節性發作的個人及環境危害因子;另比較疾病在不同季節性發作型態下其疾病嚴重度與疾病相關生活品質的分布變異。研究後續於2007年10月至2009年11月間,每月到校追蹤學童肺功能表現與鼻腔發炎情形。研究期間由環保署新莊空氣品質監測站及超級測站提供主要空氣汙染物與粒狀空氣汙染物的每日連續監測值;每月亦於學童肺功能及鼻腔發炎檢測當週進行為期一周的真菌孢子採集,提供每日真菌孢子暴露總量。使用混合效果模式(Mixed-effects model)評估空氣汙染及真菌孢子的暴露和肺功能及鼻腔發炎的相關性。本研究經台大醫院研究倫理委員會審查通過。
結果:計有4221名學童完成問卷調查,其中133位患有氣喘、1059位患有過敏性鼻炎(未患氣喘)、另2745位為健康對照。氣喘個案可區分為夏季發作、秋季發作、春冬發作及全年發作四組;過敏性鼻炎個案則可區分為春季發作、夏秋發作、冬季發作及全年發作四組。年齡、性別、父母教育程度、母親懷孕期間二手菸暴露、母乳哺育及家中牆壁霉斑可發現會造成過敏性呼吸道疾病的不同季節性發作型態。全年發作及春季發作過敏性呼吸道疾病的個案其疾病嚴重度較高,疾病相關生活品質亦較差。
研究進一步邀請33位患有氣喘、30位患有過敏性鼻炎及37位健康對照學童進行10次之到校呼吸道健康檢測。肺功能檢測分析結果發現檢測前一日之細懸浮微粒(particulate matter with an aerodynamic diameter of 2.5 μm or less, PM2.5)暴露與用力呼氣肺活量(forced vital capacity, FVC)有負相關(下降0.16 L,95%信賴區間為-0.23至-0.08 L)。前一日之真菌孢子暴露與FVC(下降0.12 L,95%信賴區間為-0.21至-0.03 L)及用力呼氣第一秒容積(forced expiratory volume in 1 second, FEV1)(下降0.10 L,95%信賴區間為-0.17至-0.02 L)皆呈現負相關。前一日之臭氧暴露則與在25%、50%、75%的FVC處時的瞬間用力吐氣流量(forced expiratory flow at 25%, 50%, and 75% of forced vital capacity, FEF25%, FEF50%, and FEF75%)及25%至50%的FVC間的平均用力吐氣流量(average expiratory flow over the middle half of forced vital capacity, FEF25-75%)呈現負相關(FEF25%下降0.39 L/s,95%信賴區間為-0.51至-0.27 L/s;FEF50%下降0.32 L/s,95%信賴區間為-0.41至-0.24 L/s;FEF75%下降0.21 L/s,95%信賴區間為-0.26至-0.15 L/s;FEF25-75%下降0.30 L/s,95%信賴區間為-0.38至-0.22 L/s)。鼻腔發炎分析結果則發現檢測當日之PM2.5暴露與總發炎細胞比例、嗜中性血白球細胞比例及細胞白介素第八因子濃度(Interleukin-8, IL-8)皆成正相關(總發炎細胞比例上升3.51%,95%信賴區間為0.78至6.23%;嗜中性血白球細胞比例上升3.45%,95%信賴區間為0.89至6.01%;IL-8上升29.98 pg/ml,95%信賴區間為3.26至56.69 pg/ml)。
結論:綜合問卷調查結果可知過敏性呼吸道疾病確實具不同季節發作型態,造成疾病發作的個人及環境危害因子也有所不同。針對不同季節發作特性來主動避免相關過敏原及進行症狀治療將可有效提升患有過敏性呼吸道疾病學童的生活品質。長期追蹤研究世代則可發現PM2.5暴露會造成鼻腔發炎及影響肺部容積;真菌孢子暴露亦會對肺部容積造成不良影響;臭氧暴露則對細小呼吸道具有不良效應。藉本研究結果可知有必要審視現有環境空氣污染物的標準以避免暴露對人體所造成之潛在危害。
zh_TW
dc.description.abstractBackground and Objective: It is important to know whether adverse respiratory response can be detected and associated with levels of air pollutants that expose to children. We conducted questionnaire and longitudinal follow-up study to examine whether respiratory atopic disease-related risk factors and quality of life (QOL) were different among children with respiratory atopic disease by seasonal patterns. We also investigated whether exposure to air pollutants and fungal spores affected children’ lung function and inflammatory cells and mediators from nasal lavage.
Method: Study participants were elementary and middle-school students in New Taipei City, Taiwan. A structured respiratory health questionnaire was administered to each participant in September 2007, followed by monthly measurements of lung function and nasal inflammation from October 2007 to November 2009. Using moving average and principal component analysis, children with respiratory atopic disease were grouped by attack seasons. The association between disease seasonality and personal and environmental factors on were assessed using logistic regression models. Disease severity and disease-related QOL were compared among seasons by the subtype of disease. Complete daily concentrations of air pollutants during the follow-up period were obtained from the Environmental Protection Administration monitoring station and Aerosol Supersite. Fungal spores were measured from Sunday to Saturday in the week of conducting lung-function measurements. Mixed-effects models were applied to examine whether air pollution and fungal spores were associated with lung function and nasal inflammatory cells and mediators, including forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow at 25%, 50%, and 75% of forced vital capacity (FEF25%, FEF50%, and FEF75%), average expiratory flow over the middle half of forced vital capacity (FEF25-75%), percentages of neutrophils, eosinophils, and monocytes in lavaged cells, and interleukin (IL)-8. The study was approved by the Institutional Review Board of the National Taiwan University Medical Center.
Result: Among 4221 children with the completed questionnaire, 133, 1059, and 2745 children were divided into three groups: “ having current asthma”, “having current allergic rhinitis (AR) but not asthma”, and “healthy control”, respectively. Four asthma (perennial, summer, fall, and spring/winter) and four AR subtypes (perennial, spring, summer/fall, and winter) were categorized. Age, gender, parental education, maternal passive smoking during pregnancy, breast feeding, and mouldy walls were found to contribute differentially to different AR subtypes. Children suffering from perennial and winter AR were found to have more severe symptoms and significantly lower QOL score compared with other subtypes.
In longitudinal follow-up, a total of 824 measurements from 100 participants over 10 months were obtained. The levels of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) measured 1 day before the lung function tests were negatively associated with FVCs (β= -0.16 L, 95% Confidence intervals (CI)= -0.23, -0.08 L). The fungal spore levels were negatively associated with measures of both FVC (β= -0.12 L, 95% CI= -0.21, -0.03 L) and FEV1 (β= -0.10 L, 95% CI= -0.17, -0.02 L). Ozone (O3) levels were negatively associated with measures of FEF25% (β= -0.39 L/s, 95% CI= -0.51, -0.27 L/s), FEF50% (β= -0.32 L/s, 95% CI= -0.41, -0.24 L/s), FEF75% (β= -0.21 L/s, 95% CI= -0.26, -0.15 L/s), and FEF25-75% (β= -0.30 L/s, 95% CI= -0.38, -0.22 L/s). In addition, the levels of PM2.5 were found associated with percentages of neutrophils (β= 3.45%, 95% CI= 0.89, 6.01%) and level of IL-8 (β= 29.98 pg/mL, 95% CI= 3.26, 56.69) in the nasal lavage on the day of exposure.
Conclusion: Specific personal and environmental risk factors could contribute to different seasonal subtypes of respiratory atopic disease. Active allergen avoidance and symptomatic treatment should be the focus of management aiming to improve the QOL among children with perennial and winter subtype. In a longitudinal schoolchildren cohort, exposure to PM2.5 might induce nasal inflammation. Exposure to PM2.5 and fungal spores might cause adverse effects on the vital capacity of schoolchildren. Decrement of small airway function was associated with exposure to O3. Our results emphasize the continued need to examine the existing standards of ambient air pollutants by documenting potential human adverse effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:42:11Z (GMT). No. of bitstreams: 1
ntu-101-D95841005-1.pdf: 3871781 bytes, checksum: 462ac3783152f3b4d895badb8ea2e0d1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 II
誌謝 III
摘要 V
Abstract VIII
Table of contents XI
List of Tables XIII
List of Figures XV
Glossary XVI
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
A. Environmental air pollutants/fungal spores in Taiwan 3
B. Environmental air pollutants/fungal spores and respiratory atopic disease 3
C. Environmental air pollutants/fungal spores and lung function 4
D. Environmental air pollutants/fungal spores and airway inflammation 5
Chapter 2 Material and Method 7
A. Study framework 7
B. Questionnaire 8
C. Longitudinal follow-up 12
D. Statistic analysis 15
Chapter 3 Results 19
A. Subject recruitment 19
B. Effect of suspected risk factors on seasonal variation of childhood respiratory atopic disease 20
C. Factors associated with lung function in children 22
D. Factors associated with nasal inflammation in children 23
Chapter 4 Discussion 26
A. Risk factors of seasonal variation of allergic disease 26
B. Effects of air pollutants/fungal spores on lung function 30
C. Effects of air pollutants/fungal spores on airway inflammation 31
D. Did increased airway inflammatory response mediate the associations between air pollution/fungal spores and lung function 33
E. Advantage/Limitation 34
Chapter 5 Conclusion 38
Chapter 6 Future work 39
A. Environmental air pollutants/aeroallergens and seasonal variation of respiratory atopic disease 39
B. Environmental air pollutants/fungal sores and airway inflammation and lung function 39
Reference 41
Publication List 48
A. Referred papers 48
B. Conference papers 48
Appendix 85
A. International Study of Asthma and Allergies in Childhood 85
B. Test procedure of spirometry 89
C. Leukocyte morphology 90
D. ELISA procedure for quantitative determination of cytokine/kemokine 91
E. Published SCI articles 97
dc.language.isoen
dc.subject鼻腔沖洗zh_TW
dc.subject空氣汙染zh_TW
dc.subject孩童zh_TW
dc.subject氣喘zh_TW
dc.subject過敏性鼻炎zh_TW
dc.subject季節性zh_TW
dc.subject疾病嚴重度zh_TW
dc.subject生活品質zh_TW
dc.subject母親懷孕二手菸暴露zh_TW
dc.subject母乳哺育zh_TW
dc.subject霉菌zh_TW
dc.subject粒狀空氣汙染物zh_TW
dc.subject細粒徑懸浮微粒zh_TW
dc.subject真菌孢子zh_TW
dc.subject肺功能zh_TW
dc.subject鼻腔發炎zh_TW
dc.subjectbreast feedingen
dc.subjectchildrenen
dc.subjectasthmaen
dc.subjectallergic rhinitisen
dc.subjectseasonalityen
dc.subjectdisease severityen
dc.subjectquality of lifeen
dc.subjectmaternal prenatal passive smokingen
dc.subjectair pollutionen
dc.subjectmoulden
dc.subjectparticulate matteren
dc.subjectparticulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5)en
dc.subjectfungal sporesen
dc.subjectlung functionen
dc.subjectnasal inflammationen
dc.subjectnasal lavageen
dc.title空氣污染與孩童呼吸道健康效應研究zh_TW
dc.titleRelationship between air pollution and adverse respiratory health outcome in childrenen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.coadvisor詹長權
dc.contributor.oralexamcommittee鄭尊仁,陳保中,吳章甫,楊俊毓,宋鴻樟
dc.subject.keyword空氣汙染,孩童,氣喘,過敏性鼻炎,季節性,疾病嚴重度,生活品質,母親懷孕二手菸暴露,母乳哺育,霉菌,粒狀空氣汙染物,細粒徑懸浮微粒,真菌孢子,肺功能,鼻腔發炎,鼻腔沖洗,zh_TW
dc.subject.keywordair pollution,children,asthma,allergic rhinitis,seasonality,disease severity,quality of life,maternal prenatal passive smoking,breast feeding,mould,particulate matter,particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5),fungal spores,lung function,nasal inflammation,nasal lavage,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2012-01-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved