Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66549
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡志偉(Chi-Wei Tsai)
dc.contributor.authorFang-Yu Huen
dc.contributor.author胡芳瑜zh_TW
dc.date.accessioned2021-06-17T00:42:06Z-
dc.date.available2023-02-17
dc.date.copyright2020-02-17
dc.date.issued2020
dc.date.submitted2020-02-05
dc.identifier.citationAlemandri V, Vaghi Medina CG, DumÓn AD, Argüello Caro EB, Mattio MF, García Medina S, López Lambertini PM, Truol G. 2015. Three members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex occur sympatrically in Argentine horticultural crops. J Econ Entomol 108: 405-413.
Ansari PG, Singh RK, Kaushik S, Krishna A, Wada T, Noda H. 2017. Detection of symbionts and virus in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), vector of the Mungbean yellow mosaic India virus in Central India. Appl Entomol Zool: 1-13.
Arora AK, Pesko KN, Quintero-Hernández V, Possani LD, Miller TA, Durvasula RV. 2018. A paratransgenic strategy to block transmission of Xylella fastidiosa from the glassy-winged sharpshooter Homalodisca vitripennis. BMC Biotechnol 18: 50.
Bourtzis K, Miller TA. 2003. Insect symbiosis. CRC Press, Boca Raton.
Bourtzis K, Miller TA. 2006. Insect symbiosis, volume 2. CRC Press, Boca Raton.
Boykin LM, De Barro PJ. 2014. A practical guide to identifying members of the Bemisia tabaci species complex: and other morphologically identical species. Front Ecol Evol 2: 45.
Brady CM, White JA. 2013. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38: 433-437.
Brumin M, Kontsedalov S, Ghanim M. 2011. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18: 57-66.
Caspi-Fluger A, Inbar M, Mozes-Daube N, Mouton L, Hunter MS, Zchori-Fein E. 2011. Rickettsia ‘in’ and ‘out’: two different localization patterns of a bacterial symbiont in the same insect species. PLoS One 6: e21096.
Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y, Liu W, Sun H. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14: 110.
Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M. 2007. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97: 407-413.
Chuche J, Auricau-Bouvery N, Danet JL, Thiéry D. 2017. Use the insiders: could insect facultative symbionts control vector-borne plant diseases? J Pest Sci 90: 51-68.
Compean K, Ynalvez R. 2014. Antimicrobial activity of plant secondary metabolites: a review. Res J Med Plant 8: 204-213.
De Barro PJ, Liu SS, Boykin LM, Dinsdale AB. 2011. Bemisia tabaci: a statement of species status. Annu Rev Entomol 56: 1-19.
Douglas AE. 2007. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25: 338-342.
Douglas AE. 2009. The microbial dimension in insect nutritional ecology. Funct Ecol 23: 38-47.
Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N. 2006. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environl Microbiol 72: 3646-3652.
Gottlieb Y, Fein EZ, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury Fdr, Ghanim M. 2010. The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84: 9310-9317.
Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y, Ghanim M, Zchori‐Fein E, Fleury F. 2010. Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19: 4365-4376.
Hansen AK, Moran NA. 2011. Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA 108: 2849-2854.
Hansen AK, Moran NA. 2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23: 1473-1496.
Hendry TA, Hunter MS, Baltrus DA. 2014. The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environl Microbiol 80: 7161-7168.
Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E. 2011. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332: 254-256.
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109: 8618-8622.
Kliot A, Cilia M, Czosnek H, Ghanim M. 2014. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with Tomato yellow leaf curl virus. J Virol 88: 5652-5660.
Kontsedalov S, Zchori‐Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M. 2008. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64: 789-792.
Lu H, Yang P, Xu Y, Luo L, Zhu J, Cui N, Kang L, Cui F. 2016. Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration. Sci Rep 6: 19344.
Łukasik P, van Asch M, Guo H, Ferrari J, Charles J. Godfray H. 2013. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16: 214-218.
Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. 2005. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA 102: 16919-16926.
Nishikori K, Morioka K, Kubo T, Morioka M. 2009. Age-and morph-dependent activation of the lysosomal system and Buchnera degradation in aphid endosymbiosis. J Insect Physiol 55: 351-357.
Oliver KM, Russell JA, Moran NA, Hunter MS. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100: 1803-1807.
Pan H, Li X, Ge D, Wang S, Wu Q, Xie W, Jiao X, Chu D, Liu B, Xu B. 2012. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PloS One 7: e30760.
Pan HP, Chu D, Liu BM, Xie W, Wang SL, Wu QJ, Xu BY, Zhang YJ. 2013. Relative amount of symbionts in insect hosts changes with host-plant adaptation and insecticide resistance. Environ Entomol 42: 74-78.
Rana VS, Singh ST, Priya NG, Kumar J, Rajagopal R. 2012. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PloS One 7: e42168.
Santos-Garcia D, Farnier PA, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ. 2012. Complete genome sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an obligate symbiont that supplies amino acids and carotenoids to Bemisia tabaci. J Bacteriol 194: 6654-6655.
Scarborough CL, Ferrari J, Godfray HCJ. 2005. Aphid protected from pathogen by endosymbiont. Science 310: 1781.
Sinisterra XH, McKenzie C, Hunter WB, Powell CA, Shatters Jr RG. 2005. Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). J Genl Virol 86: 1525-1532.
Sloan DB, Moran NA. 2012. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett 8: 986-989.
Su Q, Oliver KM, Pan H, Jiao X, Liu B, Xie W, Wang S, Wu Q, Xu B, White JA. 2013a. Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide. Environ Entomol 42: 1265-1271.
Su Q, Pan H, Liu B, Chu D, Xie W, Wu Q, Wang S, Xu B, Zhang Y. 2013b. Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Sci Rep 3: 1367.
Su Q, Xie W, Wang S, Wu Q, Liu B, Fang Y, Xu B, Zhang Y. 2014. The endosymbiont Hamiltonella increases the growth rate of its host Bemisia tabaci during periods of nutritional stress. PloS One 9: e89002.
Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T. 2010. Symbiotic bacterium modifies aphid body color. Science 330: 1102-1104.
Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monégat C, Aksoy E, Aubailly-Giraud E, Zaidman-Rémy A, Heddi A. 2014. Insects recycle endosymbionts when the benefit is over. Curr Biol 24: 2267-2273.
Wang HL, Lei T, Xia WQ, Cameron SL, Liu YQ, Zhang Z, Gowda MMN, De Barro P, Navas-Castillo J, Omongo CA, Delatte H, Lee KY, Patel MV, Krause-Sakate R, Ng J, Wu SL, Fiallo-Olivé E, Liu SS, Colvin J, Wang XW. 2019. Insight into the microbial world of Bemisia tabaci cryptic species complex and its relationships with its host. Sci Rep 9: 6568.
Wernegreen JJ. 2012. Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15: 255-262.
White JA, Kelly SE, Perlman SJ, Hunter MS. 2009. Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102: 483-489.
Xie J, Vilchez I, Mateos M. 2010. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PloS One 5: e12149.
Zhang D, Lees RS, Xi Z, Bourtzis K, Gilles JR. 2016a. Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions. PloS One 11: e0151864.
Zhang YC, Cao WJ, Zhong LR, Godfray HCJ, Liu XD. 2016b. Host plant determines the population size of an obligate symbiont (Buchnera aphidicola) in aphids. Appl Environl Microbiol 82: 2336-2346.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66549-
dc.description.abstract菸草粉蝨種群 (Bemisia tabaci) 為世界上重要的農業害蟲之一,除了透過刺吸取食植物汁液造成植物發育不良,也會傳播超過 200 種植物病毒,造成嚴重的農業損失。菸草粉蝨種群體內有多種內共生菌,包含一種主要內共生菌 (primary endosymbiont) 及七種次要內共生菌 (secondary endosymbionts)。主要共生菌 Portiera aleyrodidarum 可以提供粉蝨必需的營養,而次要共生菌(Hamiltonella defensa、Rickettsia sp. 等)對菸草粉蝨種群影響仍未被透徹了解。菸草粉蝨種群、內共生菌以及寄主植物之間有緊密的交互作用。相關文獻指出,菸草粉蝨種群取食不同寄主植物時,其體內內共生菌的數量有顯著的差異;然而,進一步探討此現象的研究仍不多。此研究將體內含有 P. aleyrodidarum、H. defensa 及 Rickettsia sp. 的銀葉粉蝨 (Bemisia argentifolii, 屬菸草粉蝨種群) 分別在五種不同的寄主植物(芥藍、棉花、胡瓜、聖誕紅及番茄)上連續飼養 20 個世代,每個世代皆從各寄主植物上取樣粉蝨,利用定量 PCR 測量在不同世代中粉蝨體內三種共生菌的數量變化,並檢測在各寄主植物上第一及第十世代粉蝨的生命相關表現 (performance) 與其體內 P. aleyrodidarum 的必需胺基酸生合成基因表現。研究結果顯示,銀葉粉蝨轉移至新寄主植物後的初幾個世代,P. aleyrodidarum 及 H. defensa 的數量會顯著下降,並於第五至第十世代時回升至原先的數量。此外,相較於第一世代,飼養於棉花的銀葉粉蝨在第十世代有更好的生命相關表現。過去研究顯示 P. aleyrodidarum 在營養方面與銀葉粉蝨有互利共生的關係,本研究近一步發現在粉蝨適應棉花的過程中,P. aleyrodidarum 的必需胺基酸生合成基因表現會受到調控。總而言之,主要共生菌會幫助銀葉粉蝨提升生命相關表現以及適應營養較差或是防禦較強的寄主植物。此研究成果奠定了銀葉粉蝨、內共生菌及寄主植物之間交互作用的研究基礎,並可以用於開發新穎的銀葉粉蝨防治策略。zh_TW
dc.description.abstractBemisia tabaci species complex is considered as a serious insect pest worldwide. It not only infests a broad range of host plants but also transmits more than 200 plant viruses. Bemisia tabaci species complex harbors several endosymbiotic bacteria called endosymbionts. Portiera aleyrodidarum is the primary endosymbiont that mainly provides B. tabaci species complex with essential nutrients, whereas the functions of secondary endosymbionts (e.g. Hamiltonella defensa, Rickettsia sp., etc.) are still little understood. Bemisia tabaci species complex, endosymbionts, and host plants have intimate interactions. It has been reported that the amounts of endosymbionts in B. tabaci species complex vary when it feeds on different host plants; however, few studies further examine this phenomenon. In this study, B. argentifolii (B. tabaci MEAM 1 putative species) harboring P. aleyrodidarum, H. defensa, and Rickettsia sp. was reared on five host plants (Chinese kale, cotton, cucumber, poinsettia, and tomato) respectively for 20 generations. The whiteflies were collected from each host plant in every generation, and then the populations of the endosymbionts were determined by quantitative PCR. The performance of B. argentifolii and the expressions of essential amino acid biosynthesis genes of P. aleyrodidarum were examined in the first and the tenth generations. The results demonstrated that the populations of P. aleyrodidarum and H. defensa decreased when the whiteflies were transferred to new host plants in the early generations and then restored to the original levels after five to ten generations. In addition, compared with B. argentifolii feeding on cotton for only one generation, the performance of B. argentifolii significantly increased after it fed for ten generations. Since P. aleyrodidarum has nutritional mutualistic relationship with B. argentifolii, we found that the expressions of some essential amino acid biosynthesis genes were regulated during acclimation to cotton. Altogether, the endosymbionts may help B. argentifolii enhance its performance and acclimate to nutrition-inferior and/or more defensive host plants. More understanding of the interactions among B. argentifolii, its endosymbionts, and host plants may strengthen the fundamental knowledge and lead to a novel strategy to control B. argentifolii.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:42:06Z (GMT). No. of bitstreams: 1
ntu-109-R06632002-1.pdf: 2044314 bytes, checksum: 656de370c20adfd16ddf8e9782ba24f6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
中文摘要........................................................................................................i
ABSTRACT..................................................................................................ii
CONTENTS.................................................................................................iv
LIST OF TABLES........................................................................................vi
LIST OF FIGURES.....................................................................................vii
INTRODUCTION.........................................................................................1
MATERIALS AND METHODS...................................................................4
Whiteflies and plants................................................................................4
Whiteflies reared on different host plants................................................4
SYBR green real-time PCR assay............................................................5
Performance of B. argentifolii..................................................................6
Expression of nutrient-related genes of P. aleyrodidarum.......................6
Statistical analyses....................................................................................8
RESULTS......................................................................................................9
Effects of host plant shifting and acclimation on the populations of the endosymbionts..........................................................................................9
Effects of host plant shifting and acclimation on the performance of B. argentifolii..............................................................................................10
Relationship between host plant shifting and acclimation and the expressions of nutrient-related genes of P. aleyrodidarum....................11
DISCUSSION.............................................................................................14
REFERENCES............................................................................................18
APPENDIX.................................................................................................34
dc.language.isoen
dc.subject生命相關表現zh_TW
dc.subject寄主植物適應zh_TW
dc.subjectPortierazh_TW
dc.subjectHamiltonellazh_TW
dc.subjectRickettsiazh_TW
dc.subjecthost plant acclimationen
dc.subjectPortieraen
dc.subjectHamiltonellaen
dc.subjectRickettsiaen
dc.subjectperformanceen
dc.title寄主植物對於銀葉粉蝨內共生菌的影響zh_TW
dc.titleEffects of host plant on the endosymbionts in Bemisia argentifoliien
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳岳隆(Yueh-Lung Wu),莊汶博(Wen-Po Chuang),朱家慶(Chia-Ching Chu),謝佳宏(Chia-Hung Hsieh)
dc.subject.keyword生命相關表現,寄主植物適應,Portiera,Hamiltonella,Rickettsia,zh_TW
dc.subject.keywordperformance,host plant acclimation,Portiera,Hamiltonella,Rickettsia,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202000362
dc.rights.note有償授權
dc.date.accepted2020-02-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved