Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王致恬(Chih-Tien Wang)
dc.contributor.authorYu-Chieh Chenen
dc.contributor.author陳鈺杰zh_TW
dc.date.accessioned2021-06-17T00:41:55Z-
dc.date.available2017-02-16
dc.date.copyright2012-02-16
dc.date.issued2012
dc.date.submitted2012-01-16
dc.identifier.citationAlexiades MR, Cepko C. 1996. Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn 205:293-307
Alexiades MR, Cepko CL. 1997. Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124:1119-31
Andrews NW, Chakrabarti S. 2005. There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol 15:626-31
Babity JM, Armstrong JN, Plumier JC, Currie RW, Robertson HA. 1997. A novel seizure-induced synaptotagmin gene identified by differential display. Proc Natl Acad Sci U S A 94:2638-41
Barber CF, Jorquera RA, Melom JE, Littleton JT. 2009. Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains. J Cell Biol 187:295-310
Berntson AK, Morgans CW. 2003. Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas. J Vis 3:274-80
Berton F, Iborra C, Boudier JA, Seagar MJ, Marqueze B. 1997. Developmental regulation of synaptotagmin I, II, III, and IV mRNAs in the rat CNS. J Neurosci 17:1206-16
Bjartmar L, Huberman AD, Ullian EM, Renteria RC, Liu X, et al. 2006. Neuronal pentraxins mediate synaptic refinement in the developing visual system. J Neurosci 26:6269-81
Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, et al. 2002. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168:3235-41
Blankenship AG, Feller MB. 2010. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11:18-29
Bonefeld BE, Elfving B, Wegener G. 2008. Reference genes for normalization: a study of rat brain tissue. Synapse 62:302-9
Brown H, Meister B, Deeney J, Corkey BE, Yang SN, et al. 2000. Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis. Diabetes 49:383-91
Brunger AT. 2005. Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys 38:1-47
Butz S, Fernandez-Chacon R, Schmitz F, Jahn R, Sudhof TC. 1999. The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. J Biol Chem 274:18290-6
Catania MV, Bellomo M, Giuffrida R, Stella AM, Albanese V. 1998. AMPA receptor subunits are differentially expressed in parvalbumin- and calretinin-positive neurons of the rat hippocampus. Eur J Neurosci 10:3479-90
Chalupa LM. 2009. Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev 4:25
Cheng Y, Sequeira SM, Malinina L, Tereshko V, Sollner TH, Patel DJ. 2004. Crystallographic identification of Ca2+ and Sr2+ coordination sites in synaptotagmin I C2B domain. Protein Sci 13:2665-72
Coombs J, van der List D, Wang GY, Chalupa LM. 2006. Morphological properties of mouse retinal ganglion cells. Neuroscience 140:123-36
Coombs JL, Van Der List D, Chalupa LM. 2007. Morphological properties of mouse retinal ganglion cells during postnatal development. J Comp Neurol 503:803-14
Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, et al. 1986. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233:859-66
Craft JL, Fulton AB, Silver J, Albert DM. 1982. Development of the outer plexiform layer in albino rats. Curr Eye Res 2:295-9
Craxton M. 2007. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans. BMC Genomics 8:259
Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, et al. 2009. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64:463-70
Desai RC, Vyas B, Earles CA, Littleton JT, Kowalchyck JA, et al. 2000. The C2B domain of synaptotagmin is a Ca(2+)-sensing module essential for exocytosis. J Cell Biol 150:1125-36
Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, et al. 2006. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26:12807-15
Dyer MA, Cepko CL. 2001. Regulating proliferation during retinal development. Nat Rev Neurosci 2:333-42
Elfving B, Bonefeld BE, Rosenberg R, Wegener G. 2008. Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse 62:662-70
Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, et al. 2006. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642-8
Feller MB. 2009. Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev 4:24
Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. 1996. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182-7
Ferguson GD, Thomas DM, Elferink LA, Herschman HR. 1999. Synthesis degradation, and subcellular localization of synaptotagmin IV, a neuronal immediate early gene product. J Neurochem 72:1821-31
Fernandez I, Arac D, Ubach J, Gerber SH, Shin O, et al. 2001. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32:1057-69
Ferraguti F, Zoli M, Aronsson M, Agnati LF, Goldstein M, et al. 1990. Distribution of glutamic acid decarboxylase messenger RNA-containing nerve cell populations of the male rat brain. J Chem Neuroanat 3:377-96
Finlay BL, Sengelaub DR. 1989. Development of the vertebrate retina. New York: Plenum Press. xvii, 287 p. pp.
Firth SI, Wang CT, Feller MB. 2005. Retinal waves: mechanisms and function in visual system development. Cell Calcium 37:425-32
Fox MA, Sanes JR. 2007. Synaptotagmin I and II are present in distinct subsets of central synapses. J Comp Neurol 503:280-96
Fukuda M. 2004. RNA interference-mediated silencing of synaptotagmin IX, but not synaptotagmin I, inhibits dense-core vesicle exocytosis in PC12 cells. Biochem J 380:875-9
Fukuda M, Kanno E, Mikoshiba K. 1999. Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X. J Biol Chem 274:31421-7
Fukuda M, Kowalchyk JA, Zhang X, Martin TF, Mikoshiba K. 2002. Synaptotagmin IX regulates Ca2+-dependent secretion in PC12 cells. J Biol Chem 277:4601-4
Galli L, Maffei L. 1988. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90-1
Gao Z, Reavey-Cantwell J, Young RA, Jegier P, Wolf BA. 2000. Synaptotagmin III/VII isoforms mediate Ca2+-induced insulin secretion in pancreatic islet beta -cells. J Biol Chem 275:36079-85
Geppert M, Archer BT, 3rd, Sudhof TC. 1991. Synaptotagmin II. A novel differentially distributed form of synaptotagmin. J Biol Chem 266:13548-52
Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, et al. 1994. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717-27
Grimberg E, Peng Z, Hammel I, Sagi-Eisenberg R. 2003. Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. J Cell Sci 116:145-54
Grozdanov V, Muller A, Sengottuvel V, Leibinger M, Fischer D. 2010. A method for preparing primary retinal cell cultures for evaluating the neuroprotective and neuritogenic effect of factors on axotomized mature CNS neurons. Curr Protoc Neurosci Chapter 3:Unit3 22
Grubb MS, Rossi FM, Changeux JP, Thompson ID. 2003. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40:1161-72
Gut A, Kiraly CE, Fukuda M, Mikoshiba K, Wollheim CB, Lang J. 2001. Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. J Cell Sci 114:1709-16
Hebb DO. 1949. The organization of behavior; a neuropsychological theory. New York,: Wiley. xix, 335 p. pp.
Hilbush BS, Morgan JI. 1994. A third synaptotagmin gene, Syt3, in the mouse. Proc Natl Acad Sci U S A 91:8195-9
Hirano AA, Morgans CW, Brecha NC. 2007. Synaptotagmin-4 expression in mammalian horizontal cells. Program No. 68.3 2007 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience. Online.
Huberman AD, Stellwagen D, Chapman B. 2002. Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus. J Neurosci 22:9419-29
Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. 2000. Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155-9
Hutt DM, Baltz JM, Ngsee JK. 2005. Synaptotagmin VI and VIII and syntaxin 2 are essential for the mouse sperm acrosome reaction. J Biol Chem 280:20197-203
Iezzi M, Eliasson L, Fukuda M, Wollheim CB. 2005. Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett 579:5241-6
Imai A, Nashida T, Shimomura H. 2001. mRNA expression of membrane-fusion-related proteins in rat parotid gland. Arch Oral Biol 46:955-62
Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. 2005. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 22:661-76
Jo H, Byun HM, Kim JH, Kim MS, Kim SH, et al. 2006. Expression of Ca2+-dependent synaptotagmin isoforms in mouse and rat parotid acinar cells. Yonsei Med J 47:70-7
Kolb H. 2003. How the retina works - Much of the construction of an image takes place in the retina itself through the use of specialized neural circuits. Am Sci 91:28-35
Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Sudhof TC. 1995. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594-9
Marqueze B, Boudier JA, Mizuta M, Inagaki N, Seino S, Seagar M. 1995. Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat. J Neurosci 15:4906-17
Martinez I, Chakrabarti S, Hellevik T, Morehead J, Fowler K, Andrews NW. 2000. Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 148:1141-49
Masztalerz A, Zeelenberg IS, Wijnands YM, de Bruijn R, Drager AM, et al. 2007. Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration. J Cell Sci 120:219-28
Michaut M, De Blas G, Tomes CN, Yunes R, Fukuda M, Mayorga LS. 2001. Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. Dev Biol 235:521-9
Mizuta M, Inagaki N, Nemoto Y, Matsukura S, Takahashi M, Seino S. 1994. Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. J Biol Chem 269:11675-8
Mizuta M, Kurose T, Miki T, Shoji-Kasai Y, Takahashi M, et al. 1997. Localization and functional role of synaptotagmin III in insulin secretory vesicles in pancreatic beta-cells. Diabetes 46:2002-6
Morgans CW. 2000. Presynaptic proteins of ribbon synapses in the retina. Microsc Res Tech 50:141-50
Mosser DD, Caron AW, Bourget L, Jolicoeur P, Massie B. 1997. Use of a dicistronic expression cassette encoding the green fluorescent protein for the screening and selection of cells expressing inducible gene products. Biotechniques 22:150-4, 6, 8-61
Osborne SL, Herreros J, Bastiaens PI, Schiavo G. 1999. Calcium-dependent oligomerization of synaptotagmins I and II. Synaptotagmins I and II are localized on the same synaptic vesicle and heterodimerize in the presence of calcium. J Biol Chem 274:59-66
Penn AA, Riquelme PA, Feller MB, Shatz CJ. 1998. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279:2108-12
Perin MS, Brose N, Jahn R, Sudhof TC. 1991. Domain structure of synaptotagmin (p65). J Biol Chem 266:623-9
Perin MS, Fried VA, Mignery GA, Jahn R, Sudhof TC. 1990. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260-3
Perry VH, Henderson Z, Linden R. 1983. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol 219:356-68
Poth K, Nutter TJ, Cuevas J, Parker MJ, Adams DJ, Luetje CW. 1997. Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci 17:586-96
Purves D, Augustine GJ, Fitzpatrick D, LaMantia AS, McNamara JO, Williams SM (eds) (2001) Neuroscience 2nd edition. Sinauer Associates, Sunderland, MA.
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, et al. 1996. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161-72
Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. 1997. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631-45
Reddy A, Caler EV, Andrews NW. 2001. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157-69
Rossi FM, Pizzorusso T, Porciatti V, Marubio LM, Maffei L, Changeux JP. 2001. Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci U S A 98:6453-8
Saegusa C, Fukuda M, Mikoshiba K. 2002. Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J Biol Chem 277:24499-505
Schiavo G, Matteoli M, Montecucco C. 2000. Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717-66
Shatz CJ, Stryker MP. 1988. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242:87-9
Singer JH, Mirotznik RR, Feller MB. 2001. Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina. J Neurosci 21:8514-22
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164-78
Sun W, Li N, He S. 2002. Large-scale morophological survey of rat retinal ganglion cells. Vis Neurosci 19:483-93
Sutton RB, Fasshauer D, Jahn R, Brunger AT. 1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347-53
Syed MM, Lee S, Zheng J, Zhou ZJ. 2004. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol 560:533-49
Tafoya LC, Shuttleworth CW, Yanagawa Y, Obata K, Wilson MC. 2008. The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons. BMC Neurosci 9:105
Torborg C, Wang CT, Muir-Robinson G, Feller MB. 2004. L-type calcium channel agonist induces correlated depolarizations in mice lacking the beta2 subunit nAChRs. Vision Res 44:3347-55
Tucker WC, Edwardson JM, Bai J, Kim HJ, Martin TF, Chapman ER. 2003. Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. J Cell Biol 162:199-209
Ullrich B, Li C, Zhang JZ, McMahon H, Anderson RG, et al. 1994. Functional properties of multiple synaptotagmins in brain. Neuron 13:1281-91
van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, et al. 2001. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337-49
van Wijngaarden P, Brereton HM, Coster DJ, Williams KA. 2007. Stability of housekeeping gene expression in the rat retina during exposure to cyclic hyperoxia. Mol Vis 13:1508-15
Vician L, Lim IK, Ferguson G, Tocco G, Baudry M, Herschman HR. 1995. Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc Natl Acad Sci U S A 92:2164-8
Vrljic M, Strop P, Ernst JA, Sutton RB, Chu S, Brunger AT. 2010. Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. Nat Struct Mol Biol 17:325-31
Wang CT, Blankenship AG, Anishchenko A, Elstrott J, Fikhman M, et al. 2007. GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. J Neurosci 27:9130-40
Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, et al. 2001. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294:1111-5
Weishaupt JH, Klocker N, Bahr M. 2005. Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells. J Mol Neurosci 26:17-25
Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, et al. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297-303
Wong RO, Chernjavsky A, Smith SJ, Shatz CJ. 1995. Early functional neural networks in the developing retina. Nature 374:716-8
Wong WT, Sanes JR, Wong RO. 1998. Developmentally regulated spontaneous activity in the embryonic chick retina. J Neurosci 18:8839-52
Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG. 2004. Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441-6
Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TF. 2002. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34:599-611
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, et al. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594-600
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66546-
dc.description.abstractSynaptotagmin (Syt) 為一種鈣離子的感應蛋白家族,至今具有十七種 isoforms。Syt 可透過受鈣離子調節的胞吐作用來影響神經傳導物質的釋放。先前研究指出,早期大鼠視網膜發育過程中的自發性放電現象 (視網膜波) 對於視神經節細胞的軸突投射至腦區並進行視野分離的過程扮演重要的角色。然而其調控的機制仍不清楚。由於視網膜波是利用突觸傳遞所引發,因此我們認為 Syt 很可能參與調控視網膜波或視野分離的過程。由於目前對於 Syt isoforms 的時空表現情形仍不是很清楚,因此在本論文中,我們針對在大鼠視網膜發育早期,研究不同種 Syt isoforms 的表現情形。首先,我們利用單細胞反轉錄聚合酶連鎖反應來研究 Syt I-IV mRNA 在視網膜神經節細胞 (視網膜中唯一會投射至腦區的神經元) 內的表現情形。實驗結果發現,Syt III mRNA只在出生後第四天到第八天的特定時期表現,而此時間點恰好是視神經節細胞的軸突投射至腦區並進行視野分離的關鍵時期;Syt I 以及 Syt IV mRNA 則在出生後第二天到第九天都能夠偵測到;Syt II mRNA則不能在出生後第二天到第九天的視神經節細胞內偵測到,推測其可能未參與視神經節細胞的發育過程。此外,我們針對整個視網膜進行反轉錄聚合酶連鎖反應來研究 Syt I 以及 Syt IV mRNA 的表現情形。結果發現,在大鼠出生後到第十一天這段期間,此兩種 Syt isoforms mRNA 表現量都上升,暗示著Syt III 在視神經節細胞以及視網膜內其他種類的細胞中分別具有不同的表現情形。此外,我們藉由定序 Syt III cDNA 序列發現 Syt III 蛋白質序列在 287 以及 448 這兩個位置分別是絲氨酸 (serine) 和精氨酸 (arginine);這個結果不同於先前研究的Syt III 蛋白質序列:此兩個位置分別是蘇氨酸 (threonine) 和賴氨酸 (lysine)。接著,我們利用免疫螢光染色的方式研究 Syt I 和 Syt III 在發育中視網膜表現的位置。研究結果顯示,Syt I 主要表現於突觸的位置,亦即視網膜的內叢狀層以及外叢狀層。此結果符合先前研究指出 Syt I 在突觸傳導中的角色。Syt III 則主要表現在視神經節細胞層、內叢狀層以及神經母細胞層。此結果暗示著 Syt III 可能對於神經細胞的分化以及遷移也扮演重要的角色。此外,為了更進一步了解 Syt III 在胞內的位置,我們將發育中的視網膜細胞分離後進行免疫螢光染色。研究結果發現 Syt III 大量表現在Brn3+ 和 Thy1.1+ 的視神經節細胞內,並且位於大小囊泡、早期核內體、溶小體以及軸突生長點。最後,利用即時定量反轉錄聚合酶連鎖反應來研究不同 Syt isoforms 的基因表現是否會受到視網膜發育中自發性放電現象 (視網膜波) 所影響。結果發現只有 Syt IV 的基因表現會受到視網膜波的活動所調控;而Syt III 的基因表現則不會。藉由以上的實驗結果,我們得知在視網膜發育過程中,Syt III 相對於 Syt I 而言,在視神經節細胞具有一個特別的時空表現模式。此結果將提供我們一些線索以及基礎來研究 Syt III 對於視網膜發育所扮演的角色。zh_TW
dc.description.abstractSynaptotagmin (Syt) constitutes a large protein family with at least seventeen isoforms, many of which serve as calcium sensors and regulate neurotransmitter releases through calcium-regulated exocytosis. In early developing rat retina, the patterned spontaneous activities (retinal waves) play an important role in regulating eye-specific segregation of retinal inputs in the dorsal lateral geniculate nucleus (dLGN). However, the underlying mechanism is still unclear. Since the retinal waves are driven by synaptic transmission, we then think Syt be involved in regulating retinal waves and/or eye-specific segregation of retinal ganglion cell (RGC) axons. In this study, we investigated the expression profiles of Syt isoforms in the developing rat retina since the lack of information about the spatiotemporal expression patterns of Syt isoforms. First, we applied the single-cell RT-qPCR (sc-RT-qPCR) to screen the expression of Syt I-IV transcripts in developing retinal ganglion cells (RGCs), the retinal output neurons projecting to central brain targets. We found that Syt III mRNA can be detected in the RGCs from the postnatal day 4 to 8 (P4-P8), which is the critical period for eye-specific segregation of the retinotopic map. In contrast, Syt I and IV mRNAs were consistently expressed in the RGCs from P2 to P9. Syt II mRNA was not detectable in the RGCs from P2 to P9, which may not be involved in RGCs development. Furthermore, by qPCR from the whole retinal lysates, we detected an increasing mRNA expression level for both Syt I and Syt III from P0 to P11. The different expression profiles of Syt III mRNA between RGCs and whole retinas suggest different roles of Syt III in output neurons (RGCs) and other types of cells (e.g. interneurons) in the developing retina. Moreover, from the P0-P11 rat retinal cDNAs, we identified that Syt III harbored S287 and R448, distinct from the previous reports (T287 and L448). Second, by immunofluorescence stainings, we found that Syt I was mainly expressed in the synaptic layers [both inner plexiform layer (IPL) and outer plexiform layer (OPL)], consistent with its role in synaptic transmission. However, Syt III showed a dot-like expression pattern in the ganglion cell layer (GCL), IPL, and neuroblast layer (NBL), implying that Syt III might be also involved in cell differentiation and maturation. Third, Syt III was largely expressed in the Brn3+ and Thy1.1+ RGCs and localized to two vesicles [small vesicles (SVs) and large dense-core vesicles (LDCVs)], early endosome/lysosome compartments and the growth cone. Finally, unlike Syt IV, we found the expression of Syt III was retinal wave activity-independent. To sum up, the unique spatiotemporal expression pattern of Syt III may provide us with some clues to investigate its possible role in the developing rat retina.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:41:55Z (GMT). No. of bitstreams: 1
ntu-101-R99b43008-1.pdf: 7576624 bytes, checksum: df18996070c7e5dc4cd34203f248c63f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
中文摘要 iii
Abstract v
Abbreviations vii
Contents x
Chapter I
Introduction 1
1.1 Neural development 1
1.2 Organization of visual system 1
1.2.1 The laminar structure of the retina 1
1.2.2 Visual transduction and visual pathway 2
1.3 Retinal development 3
1.4 Spontaneous synaptic neural activities in the early developing retina 3
1.4.1 Synaptic transmission 3
1.4.2 Retinal waves 4
1.5 Eye-specific segregation 4
1.6 Molecular mechanism of calcium-regulated exocytosis 5
1.7 Synaptotagmin (Syt) 6
1.8 Synaptotagmin III (Syt III) 8
1.8.1 Sequence and structure of Syt III 8
1.8.2 Locations of Syt III 9
1.8.3 Functions of Syt III 9
1.9 Objectives of the study 10
Chapter II
Materials and Methods 12
2.1 Animals 12
2.2 Plasmid construction and subcloning 12
2.3 Retinal dissection 15
2.4 Sc-RT-PCR 15
2.5 Total RNA extraction of whole retina 17
2.6 RT-qPCR 18
2.7 Tissue fixation and cryosection 19
2.8 Antibodies 20
2.9 Immunohistochemistry 21
2.10 Immunocytochemistry 23
2.11 Preparation of cell lysates and immunoblotting (this work was done by Yu-Tze Chang in Dr. Juu-Chin Lu’s lab) 24
2.12 Dissociated retinal cell cultures 26
2.13 Retinal explant culture 27
2.14 Transient transfection of retinal explants 28
2.15 Statistics 29
Chapter III
Results 30
3.1 Reference gene selection for qPCR analysis 30
3.2 The mRNA expression levels of different Syt isoforms were screened in the developing RGCs 30
3.3 The unique expression pattern of Syt III mRNA existed in the developing rat retina 31
3.4 The rat Syt III cDNA sequence in the developing retina contained S287 and R448 rather than T287 and L448 32
3.5 The specificity of homemade rabbit polyclonal anti-Syt III antibody was tested by immunoblotting and immunofluorescence staining in both cell lines and retinal tissues 32
3.6 Syt I and Syt III were expressed in different layers in the developing rat retina 35
3.7 Syt III was expressed mainly in the Brn3+ and Thy1.1+ RGCs in the retinal cross-sections and the P6 dissociated rat retinal cells 37
3.8 HA-Syt III was partially colocalized with Syp in PC12 cells 37
3.9 Endogenous Syt III was colocalized with two types of vesicle and early endosome/lysosome compartments in the P6 dissociated rat retinal cells 39
3.10 Syt III was expressed in the growth cone of RGCs in the P6 dissociated retinal cells 40
3.11 The expression of Syt III was unlikely affected by retinal waves 40
Chapter IV
Discussion 42
4.1 The expression of Syt isoforms in the retina 42
4.2 The expression of Syt isoforms in the developing RGCs is examined by sc-RT-qPCR 43
4.3 The comparison between sc-RT-qPCR and immunofluorescence staining results 44
4.4 Controversial expression, sequence, and subcellualr localization of Syt III 45
4.5 A possible role of Syt III in regulating eye-specific segregation during early retinal development 47
4.6 The relationship between Syt isofroms and retinal waves during early retinal development 49
Chapter V
Conclusion 51
References 52
List of Figures
Figure 1 Structure of the eyeball and the retina 61
Figure 2 Central projection targets of retinal ganglion cells (RGCs) 63
Figure 3 Illustration and mechanisms of retinal waves 64
Figure 4 C2 domains of Synaptotagmin (Syt) are crucial for calcium-regulated exocytosis 66
Figure 5 The process of harvesting a single RGC 67
Figure 6 Sc-RT-qPCR amplification plots of Syt I-IV mRNAs in the RGCs from P2 to P9 68
Figure 7 Syt I and Syt III mRNA expression profiles of a single RGC during early developing rat retina 69
Figure 8 Expression patterns of Syt III and Syt I mRNAs during early developing rat retina 70
Figure 9 Identification two sequence conflicts (S287 and R445) of Syt III cDNA in rat retina 71
Figure 10 The specificity of affinity purified anti-Syt III antibody was tested in PC12 cells and rat retinal neurons by immunofluorescence staining 73
Figure 11 The affinity purified anti-Syt III antibody could specifically recognize Syt III in PC12 cells overexpressing Syt III 75
Figure 12 Syt I was expressed in the inner plexiform layer (IPL) and outer plexiform layer (OPL) in the developing rat retina 76
Figure 13 Syt III was mainly expressed in the GCL, IPL, and NBL in the developing rat retina 78
Figure 14 Syt IV was expressed in the GCL, IPL, and OPL in the developing rat retina 80
Figure 15 Syt I and Syt III were localized to different layers in the developing rat retina 82
Figure 16 Syt III was expressed in the Brn3+ RGCs 84
Figure 17 Syt III was strongly expressed in the Brn3+ and Thy1.1+ RGCs of the P6 dissociated retinal cells 85
Figure 18 HA-Syt III fusion protein may partially target to SVs but not LDCVs in PC12 cells 87
Figure 19 Native form of Syt III may target to SVs in PC12 cells 88
Figure 20 Endogenous Syt III was localized to both types of vesicle (LDCVs and SVs) and early endosome/lysosome compartments in the P6 dissociated retinal neurons 91
Figure 21 Syt III was expressed in the growth cone of P6 RGCs 92
Figure 22 Syt III showed the retinal wave-independent gene expression 93
List of Tables
Table 1 List of RT-qPCR primers used in this study 94
Table 2 List of primary antibodies used in this study 95
Table 3 List of secondary antibodies used in this study 96
Appendix
List of Appendix Figures
Appendix Figure 1 Reference gene selection for qPCR analysis 98
Appendix Figure 2 Specificity of anti-Syt III antiserum was tested in HEK 293T cells by immunoblotting 99
Appendix Figure 3 The specificity of affinity purified anti-Syt III antibody was tested in PC12 cells by immunoblotting 100
Appendix Figure 4 Syt III mRNA was expressed in wild-type PC12 cells 101
List of Appendix Tables
Appendix Table 1 The eight candidates of reference genes for qPCR analysis 102
Appendix Figure 2 The expression profile of eight candidate reference genes in the RGCs from P2 to P9 by sc-RT-qPCR 103
The 2011 annual meeting of the Society for Neuroscience (Washington, D.C., U.S.A. 11/12-16/2011): abstract and poster 104
dc.language.isoen
dc.subject連鎖反應zh_TW
dc.subjectsynaptotaminzh_TW
dc.subject視網膜發育zh_TW
dc.subject視神經節細胞zh_TW
dc.subject視網膜波zh_TW
dc.subject視野分離zh_TW
dc.subject單細胞定量反轉錄聚合&#37238zh_TW
dc.subjectretinal ganglion cellsen
dc.subjectretinal developmenten
dc.subjectsynaptotagminen
dc.subjectsingle-cell RT-qPCRen
dc.subjecteye-specific segregationen
dc.subjectretinal wavesen
dc.titleSynaptotagmin isoforms 在發育中大鼠視網膜的時空表現模式zh_TW
dc.titleThe spatiotemporal expression patterns of Synaptotagmin isoforms in the developing rat retinaen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee焦傳金(Chuan-Chin Chiao),徐立中(Li-Chung Hsu),周申如(Shen-Ju Chou)
dc.subject.keywordsynaptotamin,視網膜發育,視神經節細胞,視網膜波,視野分離,單細胞定量反轉錄聚合&#37238,連鎖反應,zh_TW
dc.subject.keywordsynaptotagmin,retinal development,retinal ganglion cells,retinal waves,eye-specific segregation,single-cell RT-qPCR,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2012-01-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
7.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved