請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66530完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林東燦 | |
| dc.contributor.author | Yung-Li Yang | en |
| dc.contributor.author | 楊永立 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:40:49Z | - |
| dc.date.available | 2012-03-02 | |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2012-01-18 | |
| dc.identifier.citation | Armstrong, S.A. (2005) Molecular Genetics of Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 23, 6306-6315.
Beesley, A.H., Cummings, A.J., Freitas, J.R., et al. (2005) The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure. British Journal of Haematology, 131, 447-456. Bennett, J.M., Catovsky, D., Daniel, M.T., et al. (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol, 33, 451-458. Blom, B., Verschuren, M.C., Heemskerk, M.H., et al. (1999) TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood, 93, 3033-3043. Borowitz, M.J., Devidas, M., Hunger, S.P., et al. (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood, 111, 5477-5485. Bruggemann, M., Raff, T., Flohr, T., et al. (2006) Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood, 107, 1116-1123. Bruggemann, M., Schrauder, A., Raff, T., et al. (2010) Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia, 24, 521-535. Calin, G.A. & Croce, C.M. (2006) MicroRNA signatures in human cancers. Nat Rev Cancer, 6, 857-866. Campana, D. (2009) Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am, 23, 1083-1098, vii. Campana, D. (2010) Minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program, 2010, 7-12. Cario, G. (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood, 105, 821-826. Cario, G., Izraeli, S., Teichert, A., et al. (2007) High Interleukin-15 Expression Characterizes Childhood Acute Lymphoblastic Leukemia With Involvement of the CNS. Journal of Clinical Oncology, 25, 4813-4820. Cario, G., Zimmermann, M., Romey, R., et al. (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood, 115, 5393-5397. Catchpoole, D., Guo, D., Jiang, H., et al. (2008) Predicting outcome in childhood acute lymphoblastic leukemia using gene expression profiling: prognostication or protocol selection? Blood, 111, 2486-2487; author reply 2487-2488. Chango, A., Emery-Fillon, N., de Courcy, G.P., et al. (2000) A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab, 70, 310-315. Chen, S.H., Pei, D., Yang, W., et al. (2010) Genetic Variations in GRIA1 on Chromosome 5q33 Related to Asparaginase Hypersensitivity. Clinical Pharmacology & Therapeutics, 88, 191-196. Cheok, M.H. & Evans, W.E. (2006) Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nature Reviews Cancer, 6, 117-129. Cheok, M.H., Lugthart, S. & Evans, W.E. (2006) Pharmacogenomics of Acute Leukemia. Annual Review of Pharmacology and Toxicology, 46, 317-353. Choi, J., Hwang, Y.K., Sung, K.W., et al. (2007) Expression of Livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood, 109, 471-477. Cleaver, A.L., Beesley, A.H., Firth, M.J., et al. (2010) Gene-based outcome prediction in multiple cohorts of pediatric T-cell acute lymphoblastic leukemia: a Children's Oncology Group study. Molecular Cancer, 9, 105. Conter, V., Arico, M., Basso, G., et al. (2009) Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia, 24, 255-264. Conter, V., Bartram, C.R., Valsecchi, M.G., et al. (2010) Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood, 115, 3206-3214. Costea, I., Moghrabi, A. & Krajinovic, M. (2003) The influence of cyclin D1 (CCND1) 870A>G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics, 13, 577-580. Coustan-Smith, E., Mullighan, C.G., Onciu, M., et al. (2009) Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol, 10, 147-156. Coustan-Smith, E., Sancho, J., Hancock, M.L., et al. (2000) Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood, 96, 2691-2696. Crist, W., Boyett, J., Pullen, J., et al. (1986) Clinical and biologic features predict poor prognosis in acute lymphoid leukemias in children and adolescents: a Pediatric Oncology Group review. Med Pediatr Oncol, 14, 135-139. de Jonge, R. (2005) Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood, 106, 717-720. Den Boer, M.L., van Slegtenhorst, M., De Menezes, R.X., et al. (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol, 10, 125-134. Dik, W.A., Pike-Overzet, K., Weerkamp, F., et al. (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med, 201, 1715-1723. Ferrando, A.A., Neuberg, D.S., Staunton, J., et al. (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 1, 75-87. Flohr, T., Schrauder, A., Cazzaniga, G., et al. (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia, 22, 771-782. Flotho, C., Coustan-Smith, E., Pei, D., et al. (2007) A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood, 110, 1271-1277. Flotho, C., Coustan-Smith, E., Pei, D., et al. (2006) Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood, 108, 1050-1057. Forestier, E., Heyman, M., Andersen, M.K., et al. (2008) Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. British Journal of Haematology, 140, 665-672. Frosst, P., Blom, H.J., Milos, R., et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet, 10, 111-113. Gabert, J., Beillard, E., van der Velden, V.H.J., et al. (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia, 17, 2318-2357. Gajjar, A., Ribeiro, R., Hancock, M.L., et al. (1995) Persistence of circulating blasts after 1 week of multiagent chemotherapy confers a poor prognosis in childhood acute lymphoblastic leukemia. Blood, 86, 1292-1295. Gast, A., Bermejo, J.L., Flohr, T., et al. (2007) Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia, 21, 320-325. Gaynon, P.S., Trigg, M.E., Heerema, N.A., et al. (2000) Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983-1995. Leukemia, 14, 2223-2233. Goldberg, J.M. (2003) Childhood T-Cell Acute Lymphoblastic Leukemia: The Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Experience. Journal of Clinical Oncology, 21, 3616-3622. Greaves, M. (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer, 6, 193-203. Gutierrez, A., Dahlberg, S.E., Neuberg, D.S., et al. (2010) Absence of Biallelic TCR Deletion Predicts Early Treatment Failure in Pediatric T-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 28, 3816-3823. Gutierrez, A., Sanda, T., Grebliunaite, R., et al. (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 114, 647-650. Harvey, R.C., Mullighan, C.G., Chen, I.M., et al. (2010a) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood, 115, 5312-5321. Harvey, R.C., Mullighan, C.G., Wang, X., et al. (2010b) Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood, 116, 4874-4884. Healy, J., Belanger, H., Beaulieu, P., et al. (2007) Promoter SNPs in G1/S checkpoint regulators and their impact on the susceptibility to childhood leukemia. Blood, 109, 683-692. Henze, G., Fengler, R., Hartmann, R., et al. (1990) BFM group treatment results in relapsed childhood acute lymphoblastic leukemia. Haematol Blood Transfus, 33, 619-626. Hock, H., Meade, E., Medeiros, S., et al. (2004) Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev, 18, 2336-2341. Hogan, L.E., Meyer, J.A., Yang, J., et al. (2011) Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood. Holleman, A. (2006) The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood, 107, 769-776. Holleman, A., Cheok, M.H., den Boer, M.L., et al. (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med, 351, 533-542. Hong, D., Gupta, R., Ancliff, P., et al. (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science, 319, 336-339. Izraeli, S. (2010) Application of genomics for risk stratification of childhood acute lymphoblastic leukaemia: from bench to bedside? Br J Haematol, 151, 119-131. Jamroziak, K., Mlynarski, W., Balcerczak, E., et al. (2004) Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol, 72, 314-321. Jeha, S. & Pui, C.H. (2009) Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am, 23, 973-990, v. Kawamata, N., Ogawa, S., Zimmermann, M., et al. (2008) Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood, 111, 776-784. Kawedia, J.D., Kaste, S.C., Pei, D., et al. (2011) Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood, 117, 2340-2347; quiz 2556. Kinlen, L. (2004) Infections and immune factors in cancer: the role of epidemiology. Oncogene, 23, 6341-6348. Krajinovic, M., Costea, I. & Chiasson, S. (2002a) Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet, 359, 1033-1034. Krajinovic, M., Labuda, D. & Sinnett, D. (2002b) Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics, 12, 655-658. Krajinovic, M., Lemieux-Blanchard, E., Chiasson, S., et al. (2004) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J, 4, 66-72. Krajinovic, M., Lemieux-Blanchard, E., Chiasson, S., et al. (2003) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. The Pharmacogenomics Journal, 4, 66-72. Krajinovic, M. & Moghrabi, A. (2004) Pharmacogenetics of methotrexate. Pharmacogenomics, 5, 819-834. Krishnamurthy, P., Schwab, M., Takenaka, K., et al. (2008) Transporter-mediated protection against thiopurine-induced hematopoietic toxicity. Cancer Res, 68, 4983-4989. Kuiper, R.P., Schoenmakers, E.F.P.M., van Reijmersdal, S.V., et al. (2007) High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia, 21, 1258-1266. Kuiper, R.P., Waanders, E., van der Velden, V.H., et al. (2010) IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia, 24, 1258-1264. Lanciotti, M., Dufour, C., Corral, L., et al. (2005) Genetic polymorphism of NAD(P)H:quinone oxidoreductase is associated with an increased risk of infant acute lymphoblastic leukemia without MLL gene rearrangements. Leukemia, 19, 214-216. Liang, D.-C., Shih, L.-Y., Yang, C.-P., et al. (2002) Multiplex RT-PCR assay for the detection of major fusion transcripts in Taiwanese children with B-lineage acute lymphoblastic leukemia. Medical and Pediatric Oncology, 39, 12-17. Liang, D.C., Hung, I.J., Yang, C.P., et al. (1999) Unexpected mortality from the use of E. coli L-asparaginase during remission induction therapy for childhood acute lymphoblastic leukemia: a report from the Taiwan Pediatric Oncology Group. Leukemia, 13, 155-160. Liang, D.C., Shih, L.Y., Yang, C.P., et al. (2010a) Frequencies of ETV6-RUNX1 fusion and hyperdiploidy in pediatric acute lymphoblastic leukemia are lower in far east than west. Pediatr Blood Cancer, 55, 430-433. Liang, D.C., Yang, C.P., Lin, D.T., et al. (2010b) Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia, 24, 397-405. Lin, W.Y., Liu, H.C., Yeh, T.C., et al. (2008) Triple intrathecal therapy without cranial irradiation for central nervous system preventive therapy in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer, 50, 523-527. Loh, M.L., Goldwasser, M.A., Silverman, L.B., et al. (2006) Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01. Blood, 107, 4508-4513. Loh, M.L., Silverman, L.B., Young, M.L., et al. (1998) Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood, 92, 4792-4797. Lu, J., Getz, G., Miska, E.A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834-838. Lugthart, S., Cheok, M.H., den Boer, M.L., et al. (2005) Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell, 7, 375-386. Marcucci, G., Mrozek, K., Radmacher, M.D., et al. (2011) The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood, 117, 1121-1129. Martinelli, G., Iacobucci, I., Storlazzi, C.T., et al. (2009) IKZF1 (Ikaros) Deletions in BCR-ABL1-Positive Acute Lymphoblastic Leukemia Are Associated With Short Disease-Free Survival and High Rate of Cumulative Incidence of Relapse: A GIMEMA AL WP Report. Journal of Clinical Oncology, 27, 5202-5207. Mori, H., Colman, S.M., Xiao, Z., et al. (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A, 99, 8242-8247. Mullighan, C.G. (2010) New Strategies in Acute Lymphoblastic Leukemia: Translating Advances in Genomics into Clinical Practice. Clinical Cancer Research. Mullighan, C.G., Goorha, S., Radtke, I., et al. (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446, 758-764. Mullighan, C.G., Miller, C.B., Radtke, I., et al. (2008a) BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature, 453, 110-114. Mullighan, C.G., Phillips, L.A., Su, X., et al. (2008b) Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia. Science, 322, 1377-1380. Mullighan, C.G., Su, X., Zhang, J., et al. (2009a) Deletion ofIKZF1and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 360, 470-480. Mullighan, C.G., Zhang, J., Harvey, R.C., et al. (2009b) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences, 106, 9414-9418. Mullighan, C.G., Zhang, J., Kasper, L.H., et al. (2011) CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 471, 235-239. Nachmias, B., Ashhab, Y., Bucholtz, V., et al. (2003) Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res, 63, 6340-6349. Okamoto, R., Ogawa, S., Nowak, D., et al. (2010) Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica, 95, 1481-1488. Papaemmanuil, E., Hosking, F.J., Vijayakrishnan, J., et al. (2009) Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet, 41, 1006-1010. Paulsson, K., Cazier, J.B., MacDougall, F., et al. (2008) Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease. Proceedings of the National Academy of Sciences, 105, 6708-6713. Pui, C.-H. & Jeha, S. (2007a) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nature Reviews Drug Discovery, 6, 149-165. Pui, C.H., Behm, F.G., Singh, B., et al. (1990) Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 75, 174-179. Pui, C.H., Campana, D., Pei, D., et al. (2009) Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med, 360, 2730-2741. Pui, C.H., Carroll, W.L., Meshinchi, S., et al. (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol, 29, 551-565. Pui, C.H. & Evans, W.E. (1998) Acute lymphoblastic leukemia. N Engl J Med, 339, 605-615. Pui, C.H. & Evans, W.E. (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med, 354, 166-178. Pui, C.H. & Jeha, S. (2007b) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov, 6, 149-165. Pui, C.H., Relling, M.V. & Downing, J.R. (2004) Acute lymphoblastic leukemia. N Engl J Med, 350, 1535-1548. Pui, C.H., Robison, L.L. & Look, A.T. (2008) Acute lymphoblastic leukaemia. Lancet, 371, 1030-1043. Pullen, J., Shuster, J.J., Link, M., et al. (1999) Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia, 13, 1696-1707. Reiter, A., Schrappe, M., Ludwig, W.D., et al. (1994) Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood, 84, 3122-3133. Relling, M.V., Hancock, M.L., Rivera, G.K., et al. (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst, 91, 2001-2008. Riehm, H., Gadner, H., Henze, G., et al. (1990) Results and significance of six randomized trials in four consecutive ALL-BFM studies. Haematol Blood Transfus, 33, 439-450. Riehm, H., Gadner, H. & Welte, K. (1977) [The west-berlin therapy study of acute lymphoblastic leukemia in childhood--report after 6 years (author's transl)]. Klin Padiatr, 189, 89-102. Rocha, J.C.C. (2005) Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood, 105, 4752-4758. Ross, M.E., Zhou, X., Song, G., et al. (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102, 2951-2959. Rubnitz, J.E., Downing, J.R., Pui, C.H., et al. (1997) TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 15, 1150-1157. Rubnitz, J.E., Wichlan, D., Devidas, M., et al. (2008) Prospective Analysis of TEL Gene Rearrangements in Childhood Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. Journal of Clinical Oncology, 26, 2186-2191. Sather, H.N. (1986) Age at diagnosis in childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 14, 166-172. Schotte, D., De Menezes, R.X., Moqadam, F.A., et al. (2011) MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica, 96, 703-711. Schrappe, M., Reiter, A., Ludwig, W.D., et al. (2000) Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood, 95, 3310-3322. Schultz, K.R., Bowman, W.P., Aledo, A., et al. (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol, 27, 5175-5181. Scurto, P., Hsu Rocha, M., Kane, J.R., et al. (1998) A multiplex RT-PCR assay for the detection of chimeric transcripts encoded by the risk-stratifying translocations of pediatric acute lymphoblastic leukemia. Leukemia, 12, 1994-2005. Shurtleff, S.A., Buijs, A., Behm, F.G., et al. (1995) TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 9, 1985-1989. Skibola, C.F., Smith, M.T., Hubbard, A., et al. (2002) Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood, 99, 3786-3791. Skibola, C.F., Smith, M.T., Kane, E., et al. (1999) Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A, 96, 12810-12815. Sorich, M.J., Pottier, N., Pei, D., et al. (2008) In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoS Med, 5, e83. Staal, F.J., Weerkamp, F., Langerak, A.W., et al. (2001) Transcriptional control of t lymphocyte differentiation. Stem Cells, 19, 165-179. Stanulla, M., Schaeffeler, E., Flohr, T., et al. (2005) Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA, 293, 1485-1489. Stocco, G., Cheok, M.H., Crews, K.R., et al. (2009) Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther, 85, 164-172. Sulong, S., Moorman, A.V., Irving, J.A., et al. (2009) A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood, 113, 100-107. Takahashi, Y., Horibe, K., Kiyoi, H., et al. (1998) Prognostic significance of TEL/AML1 fusion transcript in childhood B-precursor acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 20, 190-195. Tosello, V., Mansour, M.R., Barnes, K., et al. (2009) WT1 mutations in T-ALL. Blood, 114, 1038-1045. Trevino, L.R., Shimasaki, N., Yang, W., et al. (2009a) Germline Genetic Variation in an Organic Anion Transporter Polypeptide Associated With Methotrexate Pharmacokinetics and Clinical Effects. Journal of Clinical Oncology, 27, 5972-5978. Trevino, L.R., Yang, W., French, D., et al. (2009b) Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet, 41, 1001-1005. Ulrich, C.M., Yasui, Y., Storb, R., et al. (2001) Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood, 98, 231-234. van Grotel, M., Meijerink, J.P.P., van Wering, E.R., et al. (2007) Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia, 22, 124-131. Vardiman, J.W., Thiele, J., Arber, D.A., et al. (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 114, 937-951. Waanders, E., van der Velden, V.H.J., van der Schoot, C.E., et al. (2010) Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. Wiemels, J.L., Cazzaniga, G., Daniotti, M., et al. (1999) Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 354, 1499-1503. Yang, J.J., Bhojwani, D., Yang, W., et al. (2008) Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood, 112, 4178-4183. Yang, J.J., Cheng, C., Yang, W., et al. (2009) Genome-wide Interrogation of Germline Genetic Variation Associated With Treatment Response in Childhood Acute Lymphoblastic Leukemia. JAMA: The Journal of the American Medical Association, 301, 393-403. Yang, Y.L., Lin, D.T., Chang, S.K., et al. (2010) Pharmacogenomic variations in treatment protocols for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer, 54, 206-211. Yeoh, E.J., Ross, M.E., Shurtleff, S.A., et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1, 133-143. Yoda, A., Yoda, Y., Chiaretti, S., et al. (2010) Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 107, 252-257. Zhang, J., Mullighan, C.G., Harvey, R.C., et al. (2011) Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood, 118, 3080-3087. Zuurbier, L., Homminga, I., Calvert, V., et al. (2010) NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia, 24, 2014-2022. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66530 | - |
| dc.description.abstract | 背景:兒童急性淋巴性白血病是兒童最常見的惡性疾病,其成因是B-cell或是T-cell在分化過程中自我更新的能力失去調控,加上其他的基因缺失或是染色體的異常,進而引發不正常的細胞增生而導致白血病的形成。過去的四十年,兒童急性淋巴性白血病在臨床醫師不斷改進化學治療以及了解疾病的預後因子下,從不到10%的存活率,一直到現在先進國家的長期存活率已經可以到90%。這樣的進步主要是來自所謂的危險因子導向的治療,而不是來自於新藥的發明,亦即不斷去尋找預後因子修正化學治療的療程,才有如此的成績。而因為對預後因子的了解以及不斷的運用新的醫學檢驗的技術,如廣泛的使用基因晶片去分析急性淋巴性白血病的基因表達或基因變化,並和臨床的資料如疾病的復發、染色體的變化、化學治療的反應,藥物的副作用做結合分析,得到更多疾病發生的機轉的基因變異以及預後因子。
過去的二十年,在台灣小兒血液腫瘤科醫生的合作之下, 成立台灣兒童癌症研究小組(Taiwan Pediatric Oncology Group,簡稱為TPOG) ,對大部份的兒童惡性腫瘤使用相同的療程(protocols) ,這當然包括兒童急性淋巴性白血病,其治療成績的進展也已經發表。而在療程的制定上,根據復發的風險分不同的危險因子族群而給予不同強度的治療。台灣治療成果的進步,主要是來自化學治療強度的增加,並不是來自預後因子測量的改善,這在標準危險群以及高危險群的病人最為明顯。最高危險群的病人治療的進步有限,而大部份復發的病人其治療失敗的原因不明。加上部份藥物的使用,如mercatopurine 的劑量與西方國家差異太大,這讓我想去探討這些預後的背後有什麼差異性。因此,我們從癌細胞的染色體轉位,基因表達,病人本身的藥物基因路徑的多形性,一直到基因缺損去探討其在台灣兒童急性淋巴性白血病病人的預後意義。 研究主題:我們的研究主題如下(1)染色體的轉位以及對治療結果的影響 (2) BCL2L13,Livin和CASP8AP2在lymphoblasts的表達量和預後的關係 (3)十七個藥物代謝路徑基因多行性和預後的關係 (4)發展PCR加上毛細管電泳去分析IKZF1 deletions在B-cell progenitor急性淋巴性白血病的預後關係(5)探討 absence of biallelic TCRγ deletions (ABD) 在T-cell急性淋巴性白血病的預後意義。 方法與結果:總共369位兒童急性淋巴性白血病病人,分別來自台大醫院、中國醫藥大學、台中榮民總醫院、彰化基督教醫院、成大醫院以及高雄長庚醫院。在取得同意書的情況下,將其診斷,緩解或是復發時的骨髓檢體凍存。其中307位是B-cell progenitor急性淋巴性白血病,62位為T-cell急性淋巴性白血病。 染色體的轉位以及數目的變化是兒童急性淋巴性白血病的主要特徵,本論文使用了multiplex RT-PCR和nested PCR檢測148位病人發病時的檢體的四種常見的染色體轉位包括t(9;22),t(1;19),t(4;11)以及t(12;21),並且加上傳統的染色體檢查做分析,這些染色體的轉位具備預後的意義。其中病人帶有t(12;21),t(1;19)以及染色體的對數大於53的預後較好,反之病人帶有t(9;22),t(4;11)以及其他MLL基因重組預後則較差。 此外,本論文使用定量PCR (Q-RT-PCR) 去定量90位病人三個與細胞凋亡(apoptosis)相關的基因( BCL2L13,Livin 和CASP8AP2) 在lymphoblasts的表達量以及和預後的關係做分析,在台灣的病人族群,lymphoblasts高表達BCL2L13是一個獨立的預後因子。 本論文總共針對病人本身的藥物代謝基因的多形性進行了預後的探討,使用的方法為PCR-based restriction fragment length polymorphism (RFLP)以及sequence-specific oligonucleotide (SSO) probe hybridization。本論文總共探好了十七個基因的多型性和預後的關係。其中105位病人接受TPOG-ALL-93 或TPOG-97-VHR 以及 91例接受TPOG-ALL-2002療程,結果發現MDR1基因,homozygotic MDR1 2677GG,3435CC,和2677G - 3435C基因型,與病人使用TPOG-ALL-93,在標準危險群病人的event-free survival (EFS)以及overall survival (OS)有顯著相關。但是這樣的預後意義並沒有在現行的療程TPOG-ALL-2002中發現,暗示化學治療的進步會讓一些不好的預後因子消失。 隨著更多的全基因組分析,愈來愈多的預後因子被發現。其中兩個比較重要的發現為在B-cell progenitor兒童急性淋巴性白血病,lymphoblasts如果有IKZF1 deletions,其EFS 和OS都不好。而在T-cell兒童急性淋巴性白血病如果lymphoblasts有absence of TCRγ deletions (ABD),非常容易發生引導期化學治療失敗,並且影響整體的EFS和OS。在本論文的病人族群中,B-cell progenitor急性淋巴性白血病病人如果帶有IKZF1 deletions,其EFS(p<0.001),OS(p= 0.0016)都比沒有帶IKZF1 deletions的病人差。對於T-cell兒童急性淋巴性白血病,在多變數回歸分析之後,病人帶有ABD有較高的引導期化學治療失敗以及較差的OS(p值分別為 0.03和0.0196)。 結論:Lymphoblasts的染色體轉位具備預後的價值,而multiplex RT-PCR 可以輔助傳統染色體檢查的不足。藥物基因學的多形性在某些族群上有預後的意義,而這樣的意義與化學治療的強度有關。IKZF1 deletions 在B-cell progenitor急性淋巴性白血病具有很強的預後意義,在目前台灣臨床醫師所使用的療程,其治療成績仍不理想。而T-cell急性淋巴性白血病帶有ABD則容易引導失敗。某些預後因子,如lymphoblasts的基因變化,的確和白人的報告有所差異,或許部份解釋了台灣的病人治療成功率較低的原因。未來如何將這些預後因子結合風險導向治療,提供帶有不良預後因子的病人(如帶有IKZF1 deletions或ABD)其他的治療是未來努力的方向。 | zh_TW |
| dc.description.abstract | Background: Acute lymphoblastic leukemia (ALL) is the most common pediatricmalignancy and accounts for 25% of childhood cancers. ALL is thought to originatefrom various important genetic lesions in blood-progenitor cells that are committed todifferentiate in the T-cell or B-cell pathway, including mutations that impart thecapacity for unlimited self-renewal and those that lead to stage-specific developmentalarrest. Cure rates have improved dramatically over the past 40 years, with 5-year overall survival rates increasing from <10% in the late 1960s to nearly 90% in 2000-2004 inadvanced countries. The success of treatment of childhood ALL depends upon theidentifications of risk factors. The advent of high-resolution genome-wide analyses ofgene expression, DNA copy number alterations and loss of heterozygosity, andwhole-gemone sequencing have led to the detection of many novel geneticabnormalities. These studies also provide new insights into the complex interactions ofmultiple genetic alterations in leukemogenesis and response to chemotherapy. Some ofthem also had strong prognostic implications.
In 1988, the Taiwan Pediatric Oncology Group (TPOG) was formed with thecooperation of all leukemia treatment centers and has since initiated nationalcooperative group studies. The treatment results were published recently. Most of theadvance of treatment rely on the intensification of chemotherapy, not the improvementof identification of risk factors. For the purpose to improve the clinical outcomes by theidentifications of prognostic factors, this thesis focused upon the studies of geneticbackgrounds of the leukemic cells and the host. Thesis: The purpose of this thesis is to investigate the prognostic factors in childhoodALL in Taiwan. (1) Four common chromosomal translocations screening includingt(12;21), t(1;19), t(4,11) and t(9;22). (2) The prognostic value of three apoptoticBCL2L13, CASP8AP2, and Livin gene expression in the childhood ALL (3) seventeenpharmacogenetic polymorphisms for outcomes (4) the prognostic value of IKZF1deletions for B-lineage ALL (5) the prognostic impact of absence of biallelic TCRγdeletions (ABD) for patients with T-cell ALL. Methods and Results: Diagnostic bone marrow or peripheral blood and remissionsamples were obtained from 369 children diagnosed with ALL between July 1996 andJune 2010 at the National Taiwan University Hospital, National Cheng Kung UniversityHospital, Chang Gung Memorial Hospital-Kaohsiung Medical Center, China MedicalUniversity Hospital, Changhua Christian Hospital, and Veterans General Hospital-Taichung. Among them, 307 were newly diagnosed B-precursor ALL and 62 wereT-cell ALL. The hallmark of childhood ALL is chromosomal alterations. Multiplex RT-PCR and nested-PCR assays were used to detect the four common chromosomal translocations,including t(9;22), t(1;19), t(4;11), and 2 variants of t(12;21) in 148 leukemic samplesupon diagnosis. Patients with ETV6-RUNX1 fusion, hyper-diploidy, and t(1;19)/TCF-PBX1fusion had the most favorable outcomes whereas those with the t(9;22)/BCR-ABL1fusion or t(4;11) and other MLL gene re-arrangement had poor prognosis (p<0.001 forevent-free survival and overall survival). We investigated the expression of threeapoptosis related genes, BCL2L13, CASP8AP2, and Livin by the method of Q-RT-PCR, as well as their prognostic significance, in a retrospective study of 90 pediatric ALLpatients diagnosed between 1996 and 2007 in Taiwan. Multivariate analysis for EFSand OS demonstrated that high expression of BCL2L13 was an independent prognostic factor for childhood ALL in this ethnic group. Seventeen genetic polymorphisms in 13pharmacogenomic targets were analyzed by PCR-based RFLP and sequence-specificoligonucleotide (SSO) probe hybridization .The pharmacogenetic polymorphisms of the host were also evaluated. Three polymorphic alleles in the multi-drug resistant 1(MDR1) gene and homozygotic MDR1 2677GG, 3435CC, and 2677G-3435Cgenotypes were also highly associated with significant reduction in event-free survival(EFS) and overall survival (OS)in patients treated by the standard risk protocol(TPOG-ALL-93 SR). Recent genome-wide analyses have identified that an alteration of IKZF1 isassociated with very poor outcomes in B-cell progenitor ALL and the absence ofbi-allelic TCRγ deletions (ABD) reportedly predicts early treatment failure in childhoodT-cell ALL. In this cohort, patients with IKZF1 deletions had inferior event-freesurvival (p<0.001) and overall survival (p=0.0016). In T-cell ALL, patients with ABDhad higher incidences of induction failure and inferior OS than those without ABD(p=0.03 and 0.0196, respectively) after multivariate regression analysis. Conclusions: The multiplex RT-PCR can complement the cytogenetic study.Chromosomal alterations had prognostic implications in childhood ALL. Theexpression of BCL2L13 was an independent prognostic factor for childhood ALL in this ethnic group. Pharmacogenetic variations had some prognostic impacts in some subsets of patients with childhood ALL. IKZF1 deletions predict poor clinical outcomes forpatient with B-cell precursor ALL. ABD also predict induction failure in T-cell ALL.These prognostic genetic alterations may be included in risk-directed therapy in thefuture. Patients with poor outcomes (such as patients with IKZF1 deletions or T-cellALL with ABD) may benefit from alternative treatment regimes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:40:49Z (GMT). No. of bitstreams: 1 ntu-100-D94421005-1.pdf: 3334182 bytes, checksum: a7b49bde144283ed5d9571cc1b8ef64e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 論文口試委員會審定書…………………………………………………i
致謝………………………………………………………………………ii 中文摘要及關鍵詞………………………………………………………iv 英文摘要及關鍵詞……………………………………………………vii 目錄………………………………………………………………………x 圖目錄…………………………………………………………………xiii 表目錄…………………………………………………………………xiv 縮寫表……………………………………………………………………xv 博士論文內容 第一章 緒論……………………………………………………………………… 1 1.1 兒童急性淋巴性白血病的簡介………………………………………… 2 1.1.1流行病學以及成因………………………………………………… 4 1.1.2病理以及致病機轉 ………………………………………………… 5 1.1.3化學治療的演進 …………………………………………………… 5 1.2 兒童急性淋巴性白血病的預後因子…………………………………… 7 1.2.1 臨床特點 (Clinical features ) ……………………………………… 7 1.2.2 免疫學分類 (Immunophenotypes) ………………………………… 7 1.2.3 染色體變化………………………………………………………… 9 1.2.4 病人藥物代謝基因的多型性……………………………………… 11 1.2.5 微量殘留腫瘤偵測(Minimal residual disease,簡稱MRD) ……… 13 1.2.6 急性淋巴性白血病的基因體變化………………………………… 16 1.3 問題的形成與嘗試解決的方法………………………………………… 22 第二章 研究方法與材料………………………………………………………… 24 2.1 病人 ……………………………………………………………………… 25 2.2 化療方案 ………………………………………………………………… 25 2.3 凍存細胞庫 ……………………………………………………………… 26 2.4 免疫表型 ………………………………………………………………… 26 2.5 DNA抽取和RNA抽取 ………………………………………………… 27 2.6 統計 ……………………………………………………………………… 27 2.6.1 multiplex RT-PCR 對四個常見的染色體轉位的檢驗 …………… 28 2.6.2 和apoptosis相關三個基因(BCL2L13,Livin以及CASP8AP2) 在台灣兒童急性淋巴性白血病的檢驗…………………………… 29 2.6.3 藥物代謝基因的多型性對預後的影響…………………………… 30 2.6.4 IKZF1 deletions 在B-cell progenitor急性淋巴性白血病的檢 驗…………………………………………………………………… 30 2.6.5 ABD (absence of biallelic TCRγ deletions)在T-cell急性淋巴 性白血病的檢驗…………………………………………………… 31 第三章 結果……………………………………………………………………… 33 3.1 multiplex RT-PCR 對四個常見的染色體轉位的檢驗以及預後 意義……………………………………………………………………… 34 3.2 三個和apoptosis相關基因(BCL2L13,Livin以及CASP8AP2) 在台灣兒童急性淋巴性白血病的預後意義…………………………… 35 3.3 藥物代謝基因的多型性對預後的影響………………………………… 36 3.4 IKZF1 deletions在B-cell progenitor 性淋巴性白血病和不良的預 後有關…………………………………………………………………… 37 3.5 T-cell 急性淋巴性白血病病人如果有ABD,則容易引導化療失 敗並且有較差的OS ……………………………………………………… 39 第四章 討論……………………………………………………………………… 41 4.1 RT-PCR 對四個常見的染色體轉位的檢驗有其臨床意義以及 必要性 …………………………………………………………………… 42 4.2 和apoptosis相關的三個基因(BCL2L13,Livin以及CASP8AP2) 在台灣兒童急性淋巴性白血病的預後意義…………………………… 44 4.3 藥物代謝基因的多型性對預後的影響 ………………………………… 46 4.4 IKZF1 deletions 在B-cell progenitor急性淋巴性白血病和不良的 預後有關………………………………………………………………… 48 4.5 T-cell 急性淋巴性白血病病人如果有ABD,則容易引導化療失敗 並且有較差的OS………………………………………………………… 52 第五章 展望……………………………………………………………………… 57 5.1 結論 ……………………………………………………………………… 58 5.2 論文的限制 ……………………………………………………………… 59 5.3 未來可以做的研究 ……………………………………………………… 60 第六章 論文英文簡述…………………………………………………………… 68 第七章 參考文獻………………………………………………………………… 87 第八章 圖表……………………………………………………………………… 105 第九章 附錄……………………………………………………………………… 143 圖目錄 圖一 本論文所有病人依據療程的EFS以及OS………………………… 106 圖二 (A) multiplex RT-PCR的跑膠圖。第一輪的multiplex RT-PCR 可以驗出帶有t(1;19), t(4;11) 以及 t(9;22)的病人 (B) nested PCR可以檢驗出帶有(12;21)的病人 …………………… 107 圖三 依據急性淋巴性白血病的染色體變異做Kaplan-Meier分析 (A) 5-year EFS 以及 (B) 5-year OS …………………………………… 108 圖四 病人有低表達 BCL2L13 有較好的EFS ( p < 0.001)以及OS ( p = 0.005) …………………………………………………………… 109 圖五 不同 CASP8AP2 表達量病人的EFS以及 OS 沒有差異 ………… 110 圖六 依Livin表達量與否的病人EFS以及 OS 沒有差異…………… 111 圖七 根據MDR1 genotypes 的生存曲線 (A) MDR1 2677 GG (B) MDR1 3435 CC (C) MDR1 2677GG-3435CC (G-C) …...……………………………… 112 圖八 用毛細管電泳分離已放大的DNA 片段。 (A) multiplex PCR I with FGFR2, exons 1, 3 and 5 of IKZF1 gene. (B) multiplex PCR II with FGFR2, exons 2, 4 and 6 of IKZF1 gene … 113 圖九 依IKZF1 deletions 的狀態的存活曲線 (A-B) 242 位病人; (C-D) 危險以及最高危險群病人…………… 115 圖十 (A-B) 比較病人使用TPOG-ALL-2002或是TPOG-ALL-93+ TPOG -97-VHR的EFS以及OS (C-D) 依據IKZF1 deletions的狀況,比較病人用TPOG-ALL-93 and TPOG-97-VHR的EFS 以及OS。 (E-F) 依據IKZF1 deletions的狀況,比較病人用TPOG-ALL-2002 的EFS 以及OS……………………………………………… 116 圖十一 (A) The phenotypic profile, with absent expression of CD1a and CD8, low expression of CD5, and expression of CD13 met the criteria of ETP-ALL (case number 41). (B) The phenotypic profile of another patient with T-cell ALL with ABD met the criteria of ETP-ALL, except for the expression of CD5 (case number 16) …………………………………………… 117 圖十二 依ABD 的狀態的OS 分析………………………………………… 118 圖十三 依ABD 的狀態的EFS 分析………………………………………… 118 表目錄 表一 台灣兒童癌症研究小組急性淋巴性白血病療程(TPOG-ALL-2002 標準危險群以及高危險群) …………………………………………… 119 表二 台灣兒童癌症研究小組急性淋巴性白血病療程(TPOG-ALL-2002 最高危險群) …………………………………………………………… 120 表三 台灣兒童癌症研究小組依發病年紀以及白血球療程分群………… 121 表四 Multiplex RT-PCR之Oligonucleotide primers 以及probes序列… 122 表五 偵測藥物代謝基因多形性所使用的方法以及 primers序列……… 123 表六 Multiplex PCR 偵測IKZF1 基因劑量的條件以及primers序列 … 125 表七 HRM 方式定序所有IKZF1 基因exon的primers序列…………… 126 表八 染色體轉位實驗病人的臨床特徵…………………………………… 127 表九 染色體轉位實驗多變數分析 EFS以及OS………………………… 128 表十 病人的臨床資料以及BCL2L13,CASP8AP2和Livin表達量的關 係……………………………………………………………………… 129 表十一 EFS的多變數迴歸分析 ……………………………………………… 130 表十二 OS的多變數迴歸分析 ……………………………………………… 131 表十三 藥物基因學實驗病人的臨床特徵 …………………………………… 132 表十四 藥物基因代謝多形性在接受不同化學治療的分佈 ………………… 133 表十五 39位接受TPOG-ALL-93-SR療程病人的統計分析………………… 135 表十六 IKZF1 deletions的狀態 ……………………………………………… 136 表十七 參與IKZF1 deletions 研究病人的臨床特徵………………………… 137 表十八 EFS的多變數迴歸分析……………………………………………… 138 表十九 T-cell急性淋巴性白血病病人的免疫表型…………………………… 139 表二十 參與ABD研究的T-cell急性淋巴性白血病的病人特徵…………… 141 表二十一 對induction failure,OS和EFS做迴歸分析……………………… 142 | |
| dc.language.iso | zh-TW | |
| dc.subject | ETV6-RUNX1 | zh_TW |
| dc.subject | BCR-ABL1 | zh_TW |
| dc.subject | MRD1 | zh_TW |
| dc.subject | BCL2L13 | zh_TW |
| dc.subject | IKZF1 deletions | zh_TW |
| dc.subject | absence of biallelic TCRγ deletions (ABD) | zh_TW |
| dc.subject | 兒童急性淋巴性白血病 | zh_TW |
| dc.subject | BCR-ABL1 | en |
| dc.subject | absence of biallelic TCRγ deletions (ABD) | en |
| dc.subject | IKZF1 deletions | en |
| dc.subject | BCL2L13 | en |
| dc.subject | ETV6-RUNX1 | en |
| dc.subject | childhood acute lymphoblastic leukemia | en |
| dc.subject | MRD1 | en |
| dc.title | 兒童急性淋巴性白血病的預後因子探討:台灣的多中心研究 | zh_TW |
| dc.title | Investigations of Prognostic Factors in Childhood Acute
Lymphoblastic Leukemia:A Multi-Center Analysis in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林淑華 | |
| dc.contributor.oralexamcommittee | 楊志新,周文堅,彭慶添,陳建旭 | |
| dc.subject.keyword | 兒童急性淋巴性白血病,ETV6-RUNX1,BCR-ABL1,MRD1,BCL2L13,IKZF1 deletions,absence of biallelic TCRγ deletions (ABD), | zh_TW |
| dc.subject.keyword | childhood acute lymphoblastic leukemia,ETV6-RUNX1,BCR-ABL1,MRD1,BCL2L13,IKZF1 deletions,absence of biallelic TCRγ deletions (ABD), | en |
| dc.relation.page | 147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-01-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
