請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66525完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李心予 | |
| dc.contributor.author | Chi-Hao Chang | en |
| dc.contributor.author | 張耆豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:40:33Z | - |
| dc.date.available | 2013-02-16 | |
| dc.date.copyright | 2012-02-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-01-18 | |
| dc.identifier.citation | 1. Yatomi, Y., et al., Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem, 1997. 121(5): p. 969-73.
2. Yatomi, Y., et al., Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood, 1995. 86(1): p. 193-202. 3. Yatomi, Y., et al., Sphingosine 1-phosphate: synthesis and release. Prostaglandins, 2001. 64(1-4): p. 107-122. 4. Spiegel, S. and S. Milstien, Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 2003. 4(5): p. 397-407. 5. Lee, H., E.J. Goetzl, and S. An, Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Physiol Cell Physiol, 2000. 278(3): p. C612-8. 6. Huang, Y.L., et al., Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells. J Biochem, 2009. 146(6): p. 815-20. 7. Tammela, T. and K. Alitalo, Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010. 140(4): p. 460-76. 8. Banerji, S., et al., LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol, 1999. 144(4): p. 789-801. 9. Oliver, G., Lymphatic vasculature development. Nat Rev Immunol, 2004. 4(1): p. 35-45. 10. Wigle, J.T., et al., An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J, 2002. 21(7): p. 1505-13. 11. Lee, O.H., et al., Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun, 1999. 264(3): p. 743-50. 12. Yoon, C.M., et al., Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood, 2008. 112(4): p. 1129-38. 13. Visentin, B., et al., Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell, 2006. 9(3): p. 225-38. 14. Takahashi, H. and M. Shibuya, The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond), 2005. 109(3): p. 227-41. 15. Melter, M., et al., Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood, 2000. 96(12): p. 3801-8. 16. Freeman, M.R., et al., Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res, 1995. 55(18): p. 4140-5. 17. Ferrara, N., K.J. Hillan, and W. Novotny, Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun, 2005. 333(2): p. 328-35. 18. Hong, Y.K., et al., VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J, 2004. 18(10): p. 1111-3. 19. Skobe, M., et al., Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol, 2001. 159(3): p. 893-903. 20. Lohela, M., et al., Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost, 2003. 90(2): p. 167-84. 21. Su, J.L., et al., The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer, 2007. 96(4): p. 541-5. 22. Hashimoto, I., et al., Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer, 2001. 85(1): p. 93-7. 23. Su, J.L., et al., The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 2006. 9(3): p. 209-23. 24. Wissmann, C. and M. Detmar, Pathways targeting tumor lymphangiogenesis. Clin Cancer Res, 2006. 12(23): p. 6865-8. 25. Chen, Z., et al., Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 2005. 65(19): p. 9004-11. 26. Roberts, N., et al., Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res, 2006. 66(5): p. 2650-7. 27. Lin, C.I., et al., Lysophosphatidic acid up-regulates vascular endothelial growth factor-C and lymphatic marker expressions in human endothelial cells. Cell Mol Life Sci, 2008. 65(17): p. 2740-51. 28. Lin, C.I., et al., Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell Signal, 2008. 20(10): p. 1804-14. 29. Shah, B.H. and K.J. Catt, GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci, 2004. 27(1): p. 48-53. 30. Rodriguez, D., C.J. Morrison, and C.M. Overall, Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta, 2010. 1803(1): p. 39-54. 31. Nagase, H., R. Visse, and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006. 69(3): p. 562-73. 32. Dean, R.A., et al., Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol, 2007. 27(24): p. 8454-65. 33. Lee, S., et al., Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol, 2005. 169(4): p. 681-91. 34. Whitelock, J.M., et al., The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem, 1996. 271(17): p. 10079-86. 35. Presta, M., et al., Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev, 2005. 16(2): p. 159-78. 36. Mott, J.D. and Z. Werb, Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol, 2004. 16(5): p. 558-64. 37. Powers, C.J., S.W. McLeskey, and A. Wellstein, Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer, 2000. 7(3): p. 165-97. 38. Itoh, N. and D.M. Ornitz, Functional evolutionary history of the mouse Fgf gene family. Dev Dyn, 2008. 237(1): p. 18-27. 39. Beenken, A. and M. Mohammadi, The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov, 2009. 8(3): p. 235-53. 40. Miller, D.L., et al., Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol, 2000. 20(6): p. 2260-8. 41. Hutley, L., et al., Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes, 2004. 53(12): p. 3097-106. 42. Uriel, S., E.M. Brey, and H.P. Greisler, Sustained low levels of fibroblast growth factor-1 promote persistent microvascular network formation. Am J Surg, 2006. 192(5): p. 604-9. 43. Schumacher, B., et al., Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation, 1998. 97(7): p. 645-50. 44. Gualandris, A., et al., Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases. Cell Growth Differ, 1996. 7(2): p. 147-60. 45. Cao, R., et al., Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res, 2004. 94(5): p. 664-70. 46. Yamaguchi, T.P., et al., fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev, 1994. 8(24): p. 3032-44. 47. He, Q.M., et al., Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem, 2003. 278(24): p. 21831-6. 48. Cooley, L.S., et al., Reversible transdifferentiation of blood vascular endothelial cells to a lymphatic-like phenotype in vitro. J Cell Sci, 2010. 123(Pt 21): p. 3808-16. 49. Groger, M., et al., IL-3 induces expression of lymphatic markers Prox-1 and podoplanin in human endothelial cells. J Immunol, 2004. 173(12): p. 7161-9. 50. Paik, J.H., et al., Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem, 2001. 276(15): p. 11830-7. 51. Lee, M.J., et al., Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell, 1999. 99(3): p. 301-12. 52. LaMontagne, K., et al., Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res, 2006. 66(1): p. 221-31. 53. Yonesu, K., et al., Involvement of sphingosine-1-phosphate and S1P1 in angiogenesis: analyses using a new S1P1 antagonist of non-sphingosine-1-phosphate analog. Biochem Pharmacol, 2009. 77(6): p. 1011-20. 54. Valtola, R., et al., VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol, 1999. 154(5): p. 1381-90. 55. Oliver, G. and M. Detmar, The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev, 2002. 16(7): p. 773-83. 56. Javerzat, S., P. Auguste, and A. Bikfalvi, The role of fibroblast growth factors in vascular development. Trends Mol Med, 2002. 8(10): p. 483-9. 57. Antoine, M., et al., Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors, 2005. 23(2): p. 87-95. 58. Hughes, S.E., Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem, 1997. 45(7): p. 1005-19. 59. Rousseau, B., et al., The tyrp1-Tag/tyrp1-FGFR1-DN bigenic mouse: a model for selective inhibition of tumor development, angiogenesis, and invasion into the neural tissue by blockade of fibroblast growth factor receptor activity. Cancer Res, 2004. 64(7): p. 2490-5. 60. Xue, L. and H.P. Greisler, Angiogenic effect of fibroblast growth factor-1 and vascular endothelial growth factor and their synergism in a novel in vitro quantitative fibrin-based 3-dimensional angiogenesis system. Surgery, 2002. 132(2): p. 259-67. 61. Chang, L.K., et al., Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A, 2004. 101(32): p. 11658-63. 62. Tomanek, R.J., et al., Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res, 2001. 88(11): p. 1135-41. 63. Presta, M., et al., Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol, 1989. 140(1): p. 68-74. 64. Vlodavsky, I., et al., Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev, 1990. 9(3): p. 203-26. 65. Tholozan, F.M., et al., FGF-2 release from the lens capsule by MMP-2 maintains lens epithelial cell viability. Mol Biol Cell, 2007. 18(11): p. 4222-31. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66525 | - |
| dc.description.abstract | 在腫瘤的生成和轉移過程中,淋巴管新生是一個很重要的機制。目前關於淋巴管新生的機制研究尚未完全了解。神經鞘氨醇 1-磷酸鹽 (Sphingosine 1-phosphate, S1P)屬於小分子水解磷酸酯,透過和其受器的結合,進而調控許多不同的反應,包括細胞增生、細胞分化、發炎反應和血管新生等反應。前人的研究指出神經鞘氨醇 1-磷酸鹽在體內外皆能促進淋巴管新生。在我們的研究也發現在人類臍靜脈內皮細胞 (Human umbilical vein endothelial cells, HUVECs)中,神經鞘氨醇 1-磷酸鹽會促進C型血管內皮生長因子 (Vascular endothelial growth facter-C, VEGF-C)的表現,進而調控淋巴管標記因子的表現。藉由核酸干擾技術,我們證實神經鞘氨醇 1-磷酸鹽調控人類臍靜脈內皮細胞淋巴管新生是透過第二型基質金屬蛋白酶 (Matrix metalloproteinase-2, MMP-2)和第一型纖維母細胞生長因子接受器 (Fibroblast growth receptor-1, FGFR-1)之訊息傳導路徑,另外此機制是透過纖維母細胞生長因子-1 (Fibroblast growth factor-1, FGF-1)依賴傳導路徑,而非纖維母細胞生長因子-2 (FGF-2)。本實驗結果顯示出神經鞘氨醇 1-磷酸鹽對於調控淋巴管新生是一個很重要的因子。 | zh_TW |
| dc.description.abstract | Lymphangiogenesis is an essential process in regulating tumor growth and metastasis. Sphingosine 1-phosphate (S1P) is a potent bioactive phospholipid, which acts as a ligand for a family of G protein-coupled S1P receptors. Through binding to these receptors, S1P modulates multiple biological processes, including cell proliferation and differentiation, inflammatory responses, and angiogenesis. Previous reports showed that S1P induces lymphangiogenesis both in vitro and in vivo. In our present study, we demonstrated that S1P induces vascular endothelial growth factor receptor (VEGF)-C expression and further upregulates lymphatic marker expressions in human umbilical vein endothelial cells (HUVECs). We previously showed that activation of lysophophatidic acid (LPA) receptors enhanced VEGF-C expression through transactivating the epidermal growth factor receptor (EGFR). In contrast, S1P-induced VEGF-C expression was blocked by treatment with SU5402, a fibroblast growth factor (FGF) receptor inhibitor, while an EGFR inhibitor has no effect. By using FGFR-1 and matrix metalloproteinase (MMP)-2 small interfering (si)RNA, we demonstrated that S1P induced HUVECs lymphangiogenesis is mediated through a MMP-2/FGFR-1 -dependent pathway. In addition, S1P-induced phosphorylation of FGFR-1 was blocked by treatment with an MMP inhibitor. Moreover, we also demonstrated that FGF-1, but not FGF-2, participates in the transactivation process.These results demonstrate a novel transactivating signaling processes activated by S1P. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:40:33Z (GMT). No. of bitstreams: 1 ntu-101-R98b41015-1.pdf: 1056797 bytes, checksum: b3b940549702b9e0dc8347855b871bcf (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝................................................................................................................i
中文摘要.......................................................................................................ii ABSTRACT……………………………………………………………….iii INTRODUCTION.........................................................................................1 Sphingosine 1-phosphate (S1P)…………………………………..…………......1 Lymphangiogenesis…………..………………………………….…………….1 S1P and Lymphangiogenesis……………………………………….…………..2 Vascular Endothelial Growth Factors (VEGFs) and VEGF receptors…………..…..3 Matrix metalloproteinases (MMPs) and transactivation of tyrosine kinase receptor.....4 Fibroblast Growth Factors (FGFs) and FGF receptors……………………….…..5 THE AIM OF THIS STUDY………………………………………………8 MATERIAL AND METHOD……………………………………………...9 Reagents……………………………………………………………………...9 Cell culture…………………………...……………………………………..10 Determination of FGFR-1 phosphorylation by an enzyme-linked immunosorbent assay (ELISA)……………………………………………………………………..10 Determination of VEGF-C protein expression by an enzyme-linked immunosorbent assay (ELISA)……………………………………………………………….11 Sphingosine 1-phosphate stimulation…………………………….…………….12 siRNA and shRNA eletroporation…………………………………..………….12 RNA isolation and reverse-transcription (RT)………………..………………….13 Quantitative real-time PCR………………………………….…………….….13 Statistical analysis………………………………………………………...…15 RESULTS....................................................................................................16 FGF receptor expression profiles in HUVECs…………………………………..16 S1P-induced VEGF-C expression in HUVECs is mediated through FGFR-1 transactivation………………………………………………………………16 S1P induces FGFR-1 phosphorylation in HUVECs……………………………...17 S1P-induced FGFR-1 phosphorylation is blocked by MMPs inhibitor……………..18 S1P-induced VEGF-C expression in HUVECs is mediated through an MMP-2-dependent mechanism………………………………………………..18 S1P -induced VEGF-C mRNA expression is mediated through FGF-1 but not FGF-2………………………………………………………………………19 S1P upregulates the lymphatic markers, Prox-1 and LYVE-1, through an MMP-2/FGFR-1-dependent pathway…………………………………………..20 S1P-induced VEGF-C is mediated by S1P1……………………………………..20 DISCUSSION…………………………………………………………….22 REFERENCE……………………………………………………………..26 FIGURES…………………………………………………………………34 Figure 1.........................................................................................................34 Figure 2...... ..................................................................................................36 Figure 3.........................................................................................................38 Figure 4.........................................................................................................40 Figure 5.........................................................................................................42 Figure 6.........................................................................................................44 Figure 7.........................................................................................................46 Figure 8.........................................................................................................48 Figure 9.........................................................................................................50 Figure 10........................................................................................................52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經鞘氨醇 1-磷酸鹽 | zh_TW |
| dc.subject | 人類臍靜脈內皮細胞 | zh_TW |
| dc.subject | 淋巴管新生 | zh_TW |
| dc.subject | 纖維母細胞受器-1 | zh_TW |
| dc.subject | C型血管內皮細胞生長因子 | zh_TW |
| dc.subject | human umbilical vein endothelial cells (HUVECs) | en |
| dc.subject | sphingosine 1-phosphate (S1P) | en |
| dc.subject | vascular endothelial growth factor C (VEGF-C) | en |
| dc.subject | fibroblast growth factor receptor-1 (FGFR1) | en |
| dc.subject | transactivation | en |
| dc.subject | lymphangiogenesis | en |
| dc.title | 利用人類臍靜脈內皮細胞探討S1P調控VEGF-C及淋巴標記表現機制之研究 | zh_TW |
| dc.title | The signaling mechanism of sphingosine 1-phosphate-regulated vascular endothelial growth factor-C and lymphatic marker expressions in human umbilical cord vein endothelial cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊宏,黃偉邦,陳思原 | |
| dc.subject.keyword | 神經鞘氨醇 1-磷酸鹽,C型血管內皮細胞生長因子,纖維母細胞受器-1,淋巴管新生,人類臍靜脈內皮細胞, | zh_TW |
| dc.subject.keyword | sphingosine 1-phosphate (S1P),vascular endothelial growth factor C (VEGF-C),fibroblast growth factor receptor-1 (FGFR1),transactivation,lymphangiogenesis,human umbilical vein endothelial cells (HUVECs), | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-01-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
