請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66524
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳立仁(Li-Jen Chen) | |
dc.contributor.author | Kuan-Hung Cho | en |
dc.contributor.author | 卓冠宏 | zh_TW |
dc.date.accessioned | 2021-06-17T00:40:30Z | - |
dc.date.available | 2015-02-16 | |
dc.date.copyright | 2012-02-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-01-18 | |
dc.identifier.citation | Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1
Bertrand, E.; H. Dobbs, D.; Broseta, J. O.; Indekeu, D.; Bonn, D.; Meunier, J. Phys. Rev. Lett. 2000, 85, 1282 Bico, J.; Marzolin, C.; Quéré, D. Europhys Lett. 1999, 47, 220 Bico, J.; Roman, B.; Moulin, L;. Boudaoud, A. Nature 2004, 432, 690 Cahn, J. W. J. Chem. Phys. 1977, 66, 3667 Cao, L. L.; Jones, A. K.; Sikka, V. K.; Wu, J. Z.; Gao, D. Langmuir 2009 ,25 , 12444 Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546 Chang, H. W.; Hsu, C.C. Jpn. J. Appl. Phys.2010, 49, 016101 Chen, L.J.; Yan, W. J. J. Chem. Phys. 1993, 98, 4830 Cherepanova, T. A. and Stekolnikov, A. V. Mol. Phys. 1994, 82, 125 Evans, R. Adv. Phys. 1979, 28, 143 Choi, A. ; Kim, J. Y. ; Lee, J. E. ; Jung, H. I. Current Applied Physics 2009, 9, e294 Coulson, S.;Woodward, I.; Badyal, J.; Brewer, S. A.; Willis, C. J. Phys. Chem. B 2000, 104, 8836 Erbil, H. Y.; Demirel, A. L.; Avci, Y; Mert, O. Science 2003, 299, 1377 Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Angew. Chem. Int. Ed. 2002, 41, 7 Feng, L.; Zhang,Y.; Xi, J.; Zhu, Y.; Wang, Nű; Xia, F.; Jiang, L. Langmuir 2008, 24, 4114 Furmidge, C. G. L. J. Colloid. Sci. 1962, 17, 309 Gao, L. ; McCarthy, T. J. Langmuir 2006, 22, 2966 Garcia-Lisbona, M. N.; Galindo, A.; Jackson, G.; Burgess, A. N. Mol. Phys. 1998, 93, 57 Garrod, R. P.; Harris, L. G.; Schofield, W. C. E.; McGettrick, J.; Ward , L. J. ; Teare, D. O. H.; Badyal, J. P. S. Langmuir 2007 , 23 , 689 Good, R. J. Contact angle, wetting, and adhesion: a critical review. In Contact Angle, Wettability and Adhesion, Mittal, K.L., Ed; VSP BV: Utrecht, 1993, 3 Gompper, G. and M. Schick, Phase Transitions and Critical Phenomena, ed. C. Domb and J. L. Lebowitz, Academic, New York, 1994, Vol. 16 Guo, C.; Feng, L.; Zhai, J.; Wang, G.; Song, Y.; Jiang, L.; Zhu, D. Chem. Phys. Chem. 2004, 5,750 Hare, E. F.; Shafrin, E.G..; Zisman, W. A. J. Phys. Chem. 1954, 58, 236 Johnson, R. E., Jr.; Dettre, R. H. Adv. Chem. Ser. 1963, 43, 112 Johnson, R. E., Jr.; Dettre, R. H.; Matijevic, E. Surface and Colloid Science, Ed.;Wiley: New York, 1969, 2, 85 Jopp, J.; Grüll, H.; Yerushalmi-Rozen, R. Langmuir 2004, 20, 10015. Kahlweit, M.; Busse, G. J. Chem. Phys. 1989, 91, 1339 Khang, D. Y.; Lee, H. H. Langmuir, 2004, 20, 2445 Kim, M.; Kim, K.; Lee, N. Y.; Shin, K.; Kim, Y. S. Chem. Commun. 2007, 2237 Lafuma, A; Quéré, D. Nat. Mater. 2003, 2, 457 Li, X. M.; He, T.; Mercedes, C. C.; Reinhoudt, D. N. Langmuir 2008, 24, 8008 Marzolin, C.; Smith, S. P.; Prentiss, M.; Whitesides, G. M. Adv. Mater. 1998, 10, 571 Miller, J.; Veeramasuneni, J.; Yalamanchili, M. Polym. Eng. Sci. 1996, 36, 1849 Min, W. L.; Jiang, B.; Jiang, P. Adv. Mater. 2008 , 20 , 3914 Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto K.; Watanabe, T. Langmuir 2000, 16, 5754 Nakajima A.; Abe1 K.; Hashimoto K.; Watanabe T. Thin Solid Films 2000, 376, 140 Nakajima, A.; Hashimoto, K.; Watanabe, T. Langmuir 2000, 16, 7044. Neumann, A. W.; Spelt, J. K. Applied Surface Thermodynamics, 1996, Marcel Dekker, New York Nosonovsky, M.; Bhushan, B. Microelectronic Engineering 2007,84, 382 Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Langmuir, 2002, 18, 5314 Onda, T.; Shibuichi, S.; Satoh, N; Tsujii, K. Langmuir 1996, 12, 2125. Öner, D.; McCarthy, T. J. Langmuir 2000, 16, 7777 Quéré, D.; Azzopardi, M. J.; Delattre, L. Langmuir 1998, 14 2213 Pokroy, B.; Kang, S. H.; Mahaevan L.; Aizenberg, J. Science 2009, 323, 237 Rao, K. S.; Khalil, E. H.; Kodaki, T; Matsushige, K; Makino, K. Journal of Colloid and Interface Science 2005, 289, 125 Reyssat, M.; Yeomans, J. M.; Quéré, D. EPL 2008, 81, 26006 Ross, D.; Bonn, D.; Meunier, J. J. Chem. Phys. 2001, 114, 2784 Shang, H. M.; Wang, Y.; Limmer, S. J.; Chou, T. P.; Takahashi, K.; Cao, G. Z. Thin Solid Films 2005, 472, 37. Shibuichi, S.; Yamamoto, T.; Onda, T.; Tsujii, K. Langmuir 1996, 12, 2125 Sia, S. K.; Whitesides, G. M. Electrophoresis 2003, 24, 3563 Talanquer, V. and Oxtoby, D. W. Faraday Discuss. 1999, 112, 91 Tarazona, P.; Telo da Gama, M. M.; Evans, R. Mol. Phys. 1983, 49, 283 Tsai, P. S.; Yang, Y. M.; Lee, Y. L. Langmuir 2006, 22, 5660 Tsai, P. S.; Yang, Y. M.; Lee, Y. L. Nanotechnology 2007, 18, 465604 Ulman, A. An Introduction to Ultrathin Organic Film , 1991, Academic Press, San Diego Wang, Y.; Lieberman, M. Langmuir 2003, 19, 1159 Wasserman, S. R.; Whitesides, G. M.; Tidswell, I. M.; Ocko, B. M.; Pershan, P. S.; Axe, J. D. J. Am. Chem. Soc. 1989, 111, 5852 Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988 Whitesides, G. M. Nature 2006, 442, 27 Xia, Y.; Whitesides, G.. M. Angew. Chem. Int. Ed. Engl. 1998, 37, 550 Xiu, Y.; Liu, Y.; Hess, D. W.; Wong, C. P. Nanotechnology 2010, 21,155705 Yao, X.; Song ,Y. ; Jiang, L. Adv. Mater. 2011, 23, 719 Yeh, M.C.; Chen, L. J. J. Chem. Phys. 2001, 115, 8575 Yeh, K. Y.; Chang J. Y.; Chen, L. J. Langmuir 2008, 24, 245 Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Langmuir 2002, 18, 5818 Young, T. Phil. Trans. 1805, 95, 65 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66524 | - |
dc.description.abstract | 我們以軟性模板壓印法(soft embossing)製備規則柱狀表面,經由PDMS (polydimethylsiloxane)轉印半導體微影蝕刻技術製造出一系列各種尺寸及不同間距的方形柱狀突起矽晶母片,再經過溶膠凝膠溶液(sol-gel precursor)及PET (poly(ethyleneterephthalate))溶液以旋轉塗布方式塗布在基材上,直接以PDMS 印章壓印在塗布二氧化矽溶膠凝膠溶液及PET溶液的基材上,加熱以除去溶液中的溶劑,進而進行熱固化,再移去PDMS 印章後,在表面即留下具有微結構圖案的無機二氧化矽薄膜及有機PET薄膜,完成矽晶母片圖案的轉移。在疏水的自聚性單分子膜處理下,由接觸角的量測結果發現,水滴於這些具結構表面的理論Wenzel狀態及Cassie狀態數值相符。由於藉由製備階層式結構可以更有效地達到超疏水的特性。在此研究中,我們主要提供3種不同建構微/奈米階層式結構的方法,在表面修飾後進行濕潤行為的探討:
(1) 利用軟壓印溶膠凝膠與二氧化矽奈米粒子混合液製備微/奈米階層式結構,由前進角與後退角的結果中證明由於二氧化矽奈米粒子的添加,有助於增加表面的粗糙度,水滴於規則柱狀結構由原本處於Wenzel狀態,於適當粗糙度的微/奈米階層式結構下濕潤轉換為Cassie狀態,此結果顯示微/奈米階層式結構有助於增加表面的疏水性。如此一來,我們可以藉由微/奈米階層式結構當作模板,利用二次軟壓印溶膠凝膠的方式,快速製備具階層式結構的超疏水表面。 (2) 旋轉塗布二氧化矽奈米粒子於規則柱狀二氧化矽薄膜上製備二氧化矽微/奈米階層式結構,由前進角/後退角與滑動角的量測結果,顯示不同的表面濕潤行為。我們發現旋轉塗布二氧化矽奈米粒子於原本處在Wenzel狀態的結構,將有助於粗糙度的增加,濕潤轉換為黏附型超疏水表面。再經由二次旋轉塗布二氧化矽奈米粒子後,建構的複合式粗糙結構可以製備易滑動型超疏水表面。此外,為了將這些表面更具有廣泛的應用性,我們改善並檢驗二氧化矽奈米粒子與基材的黏附測試,在結果中進行討論。 (3) 射頻式電容耦合電漿蝕刻規則柱狀PET薄膜製備微/奈米階層式結構,經由簡單的控制電漿蝕刻時間,達到不同的濕潤行為(Wenzel 狀態、玫瑰花瓣狀態與Cassie 狀態)。由前進角/後退角與滑動角的量測結果,蝕刻後具奈米特定紋路結構為主宰黏附型超疏水表面/易滑動型超疏水表面的重要因素。我們發現只需電漿蝕刻規則柱狀PET薄膜1分鐘,即可以得到易滑動型超疏水表面。因此,經由電漿蝕刻方式,可以有效地製備黏附型超疏水表面/易滑動型超疏水表面。 此外,我們製備一系列不同尺寸具有不同軟硬程度的PDMS具規則柱狀結構,觀察表面的形貌及疏水影響性,我們亦觀察水滴在表面上的動態行為。控制不同比例主劑與硬化劑溶液比例的PDMS製備規則柱狀結構,可以得到不同的濕潤行為。由前進角/後退角與滑動角的量測結果,我們發現當主劑與硬化劑溶液比例為5:1與10:1時符合理論預測的Wenzel 狀態與Cassie 狀態。然而,當主劑與硬化劑溶液比例為20:1時,濕潤行為在量測前進角/後退角時有較大的改變,規則柱狀結構易倒塌或黏附在一起而造成濕潤行為的改變。此外,水滴在其表面經由光學顯微鏡的動態現象觀察,當方柱小、材質軟且柱高較高時,水滴會往結構底部開始滲透,由Cassie狀態濕潤轉換為Wenzel狀態。接著,由於水滴重力誘發像骨牌般倒塌的魚脊狀特定紋路產生。 | zh_TW |
dc.description.abstract | A series of pillar-like patterns silicon wafer with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilaned monolayer. The regular pillar-like structure silica and Poly(ethylene terephthalate) (PET) surface is fabricated by embossing silica sol-gel precursor and PET precursor on glass substrates with an elastomeric mold. Both advancing and receding contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and of the Wenzel model after surface modification. It is well understood that the superhydrophobicity could be achieved much more effectively by applying a hierarchical structure. The wetting behaviors of three different methods to construct hierarchical structures after surface modification will be discussed:
(1) The hierarchical structure silica surface of inlaying silica nanoparticles along a regular pillar-like pattern is fabricated by embossing silica sol-gel precursor mixed with silica nanoparticles on glass substrates with an elastomeric mold. The advancing/ receding contact angle measurements are performed to demonstrate that a water droplet on these surfaces under an appropriate roughness can exhibit a transition from the Wenzel state to the Cassie state due to the addition of silica nanoparticles to enhance its surface roughness. Thus, the hierarchical structure is followed to develop the PDMS mold from the substrate as the template, and then, the substrate with hierarchical structure of bumpy surfaces along the pillar-like pattern is fabricated by simply embossing the PDMS mold on the silica sol-gel precursor (with no nanoparticles) directly for forming patterns over large areas in a facile fabrication. (2) Silica nanoparticles were spin-coated onto the flat/patterned (regular pillar-like) substrate to enhance the surface roughness. The advancing/receding contact angle and sliding angle measurements were performed to determine the wetting behavior of a water droplet on the surface. It is interesting to find out that a transition from the Wenzel surface to the sticky superhydrophobic surface is observed due to the spin-coating silica nanoparticles. The slippery superhydrophobic surface can be further obtained after secondary spin-coating silica nanoparticles to generate the multi-scale roughness structure. The prepared superhydrophobic substrates should be robust for practical applications. The adhesion between the substrate and nanoparticles is also examined and discussed. (3) Dual-scale roughness superhydrophobic surfaces are prepared by rf-capacitively coupled plasma etching the regular pillar-like patterned poly(ethyleneterephthalate) (PET) surfaces. Different wetting behaviors (Wenzel state, Petal state and Cassie state) can be achieved on the prepared dual-scale roughness surfaces by simply controlling the plasma etching time. It is found that a slippery superhydrophobic surface of patterned PET structures can be obtained by plasma etching simply for 1 minute. The advancing/receding contact angles and the sliding angle are systematically performed and applied to distinguish the difference between the slippery and sticky superhydrophobic surfaces. The nanoscale texture created by plasma etching on top of the patterned surfaces is an important factor governing the sticky/slippery surface. As a consequence, slippery/sticky superhydrophobic surfaces could be achieved much more effectively by plasma etching process. In addition, we prepare a series of pillar-like patterns PDMS with different pillar sizes and spacing, and we demonstrate that different wetting behavior of regular pillar-like patterned PDMS can be achieved by controlling the mixing ratio of polydimethylsiloxane’s (PDMS’s) prepolymer base and curing agent. The dynamic contact angles and sliding angles of water droplet on these patterned surfaces are carefully measured. It is found that the experimental results in PDMS substrates prepared at the mixing ratio of base to curing agent 5:1 and 10:1 are consistent with the theoretical predictions of the Wenzel model and Cassie model. However, for the PDMS substrates prepared at the mixing ratio of base to curing agent 20:1, the wetting behavior would change due to the deformation of the structure—collapse of pillars due to the softness. Besides, the dynamic phenomenon of the wetting transition process of water penetrating into the pillars is observed through the optical microscope when a water droplet is placed on the regular pillar-like patterned PDMS substrates. The pillars are pushed down by water one after one like dominoes at higher ratio of base to curing agent. The featured pattern of the impregnating process is discussed when the collapse is occured. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:40:30Z (GMT). No. of bitstreams: 1 ntu-101-D95524004-1.pdf: 10218025 bytes, checksum: 84c8d3c88b418a7fd624dd5f7e9e97f2 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 …………………………………………………… I
英文摘要 …………………………………………………… IV 目錄 …………………………………………………… VIII 表目錄 …………………………………………………… XIII 圖目錄 …………………………………………………… XVII 符號表 …………………………………………………… XXXI 第一章 緒論.................................... 1 1.1 前言.................................... 1 1.2 濕透行為簡介............................ 2 1.3 理想表面的溼潤行為...................... 5 1.4 粗糙表面的溼潤行為...................... 6 1.5 遲滯現象與自潔效果...................... 12 1.6 滑動角與接觸角的關係.................... 15 1.7 濕潤狀態轉換............................ 18 1.8 荷葉效應及玫瑰花瓣效應.................. 21 1.9 研究動機................................ 24 第二章 文獻回顧................................ 26 2.1 超疏水性表面的製備方法.................. 26 2.1.1異相成核法... ..................... 26 2.1.2 相分離法.......................... 28 2.1.3模板法............................. 28 2.1.4沉積法............................. 31 2.1.5蝕刻法............................. 33 2.2 階層式結構超疏水表面.................... 35 2.3 軟壓印.................................. 38 2.4 溶膠凝膠................................ 42 2.5 自聚性單分子膜.......................... 43 2.6 超疏水表面的應用........................ 46 2.6.1超疏水紡織品. ..................... 46 2.6.2透明/抗反射超疏水薄膜.............. 48 2.6.3防結凍/防結霜產品.................. 50 2.6.4儲水槽............................. 50 第三章 實驗部分................................ 53 3.1 藥品與器材.............................. 53 3.1.1藥品............................... 53 3.1.2實驗器材........................... 54 3.2 具結構超疏水性表面之製備................ 56 3.2.1 具規則柱狀結構之矽晶母片.......... 56 3.2.2軟壓印技術製備規則柱狀結構......... 58 3.3 二氧化矽奈米粒子之製備.................. 63 3.4 具微/奈米階層式結構超疏水表面之製備..... 64 3.4.1軟壓印溶膠凝膠與二氧化矽奈米粒子混合液製備微/奈米階層式結構................................... 64 3.4.2旋轉塗布二氧化矽奈米粒子於規則柱狀二氧化矽薄膜上製備二氧化矽微/奈米階層式結構................ 67 3.4.3電漿蝕刻規則柱狀PET薄膜製備微/奈米階層式結構............................................... 69 3.5 表面修飾................................ 71 3.6 PDMS具規則柱狀結構...................... 73 3.7 實驗設備儀器............................ 74 3.7.1 微影技術製造Master所需儀器........ 74 3.7.2製備薄膜所需儀器................... 74 3.7.3壓印製程所需儀器................... 74 3.7.4表面分析所需儀器................... 75 第四章 軟壓印溶膠凝膠與二氧化矽奈米粒子混合液製備微/奈米階層式結構............................................... 86 4.1 軟壓印溶膠凝膠溶液製備二氧化矽具規則柱狀結構..86 4.2 軟壓印溶膠凝膠與不同粒徑的二氧化矽奈米粒子混合液製備微/奈米階層式結構.............................. 91 第五章 旋轉塗布二氧化矽奈米粒子於規則柱狀二氧化矽薄膜上製備二氧化矽微/奈米階層式結構................................ 108 5.1 二氧化矽奈米粒子之薄膜表面.............. 109 5.2 二氧化矽微/奈米階層式結構............... 110 5.3 黏附/滑落區間理論情形................... 116 5.4 滑動角與遲滯角關係...................... 117 5.5 二氧化矽奈米粒子與基材表面的附著測試.... 117 第六章 電漿蝕刻規則柱狀PET薄膜製備微/奈米階層式結構..... 136 6.1 PET具奈米紋路結構....................... 137 6.2 PET微/奈米階層式結構.................... 139 6.3 黏附/滑落區間理論情形................... 142 第七章 軟硬程度對於不同尺寸PDMS具規則柱狀結構的疏水影響性 157 7.1 PDMS具規則柱狀結構的濕潤行為............ 157 7.2 水滴於PDMS具規則柱狀結構表面的動態行為.. 161 7.3 PDMS具規則柱狀結構不同尺寸下對濕潤行為的影響性............................................... 163 第八章 結論.................................... 190 未來展望......................................... 194 參考文獻......................................... 195 著作目錄 ........................................ 200 | |
dc.language.iso | zh-TW | |
dc.title | 具階層式結構超疏水表面的研究 | zh_TW |
dc.title | Study of superhydrophobic surfaces
with hierarchical structures | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 諶玉真(Yu-Jane Sheng),謝之真(Chih-Chen Hsieh),林析右(Shi-Yow Lin),張鑑祥(Chien-Hsiang Chang),陳炳宏(Bing-Hung Chen) | |
dc.subject.keyword | 超疏水表面,軟壓印,階層式結構,前進角,自聚性單分子膜, | zh_TW |
dc.subject.keyword | superhydrophobic surface,soft embossing,hierarchical structure,advancing contact angle,SAM, | en |
dc.relation.page | 202 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-01-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 9.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。