Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66481
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳小梨(Show-Li Chen) | |
dc.contributor.author | Ping-Chang Kuo | en |
dc.contributor.author | 郭秉昌 | zh_TW |
dc.date.accessioned | 2021-06-17T00:38:12Z | - |
dc.date.available | 2017-03-02 | |
dc.date.copyright | 2012-03-02 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-01-31 | |
dc.identifier.citation | Abate-Shen, C., and Shen, M.M. (2000). Molecular genetics of prostate cancer. Genes Dev 14, 2410-2434.
Ajuh, P., Kuster, B., Panov, K., Zomerdijk, J.C., Mann, M., and Lamond, A.I. (2000). Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J 19, 6569-6581. Alimirah, F., Panchanathan, R., Chen, J., Zhang, X., Ho, S.M., and Choubey, D. (2007). Expression of androgen receptor is negatively regulated by p53. Neoplasia 9, 1152-1159. Attard, G., Reid, A.H., Yap, T.A., Raynaud, F., Dowsett, M., Settatree, S., Barrett, M., Parker, C., Martins, V., Folkerd, E., Clark, J., Cooper, C.S., Kaye, S.B., Dearnaley, D., Lee, G., de Bono, J.S. (2008). Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 26, 4563-4571. Aylon, Y., and Oren, M. (2007). Living with p53, dying of p53. Cell 130, 597-600. Banerji, U. (2009). Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15, 9-14. Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., and Rosen, N. (2002). Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277, 39858-39866. Beck, B.D., Park, S.J., Lee, Y.J., Roman, Y., Hromas, R.A., and Lee, S.H. (2008). Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair. J Biol Chem 283, 9023-9030. Bergamaschi, D., Samuels, Y., Zhong, S., and Lu, X. (2005). Mdm2 and mdmX prevent ASPP1 and ASPP2 from stimulating p53 without targeting p53 for degradation. Oncogene 24, 3836-3841. Blok, L.J., de Ruiter, P.E., and Brinkmann, A.O. (1996). Androgen receptor phosphorylation. Endocr Res 22, 197-219. Bode, A.M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805. Braithwaite, A.W., Del Sal, G., and Lu, X. (2006). Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ 13, 984-993. Buchanan, G., Ricciardelli, C., Harris, J.M., Prescott, J., Yu, Z.C., Jia, L., Butler, L.M., Marshall, V.R., Scher, H.I., Gerald, W.L., Coetzee, G.A., Tilley, W.D. (2007). Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res 67, 10087-10096. Burnstein, K.L. (2005). Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem 95, 657-669. Chen, C.D., Welsbie, D.S., Tran, C., Baek, S.H., Chen, R., Vessella, R., Rosenfeld, M.G., and Sawyers, C.L. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10, 33-39. Chen, H.R., Jan, S.P., Tsao, T.Y., Sheu, Y.J., Banroques, J., and Cheng, S.C. (1998). Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol 18, 2196-2204. Chen, H.R., Tsao, T.Y., Chen, C.H., Tsai, W.Y., Her, L.S., Hsu, M.M., and Cheng, S.C. (1999). Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A 96, 5406-5411. Chen, P.H., Tsao, Y.P., Wang, C.C., and Chen, S.L. (2008). Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res 36, 51-66. Chen, Y., Clegg, N.J., and Scher, H.I. (2009). Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol 10, 981-991. Colaluca, I.N., Tosoni, D., Nuciforo, P., Senic-Matuglia, F., Galimberti, V., Viale, G., Pece, S., and Di Fiore, P.P. (2008). NUMB controls p53 tumour suppressor activity. Nature 451, 76-80. Cronauer, M.V., Schulz, W.A., Burchardt, T., Ackermann, R., and Burchardt, M. (2004). Inhibition of p53 function diminishes androgen receptor-mediated signaling in prostate cancer cell lines. Oncogene 23, 3541-3549. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., and Nardai, G. (1998). The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79, 129-168. Culig, Z., Hobisch, A., Bartsch, G., and Klocker, H. (2000). Androgen receptor--an update of mechanisms of action in prostate cancer. Urol Res 28, 211-219. D'Souza, S., Xin, H., Walter, S., and Choubey, D. (2001). The gene encoding p202, an interferon-inducible negative regulator of the p53 tumor suppressor, is a target of p53-mediated transcriptional repression. J Biol Chem 276, 298-305. Dehm, S.M., and Tindall, D.J. (2007). Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21, 2855-2863. Fortschegger, K., Wagner, B., Voglauer, R., Katinger, H., Sibilia, M., and Grillari, J. (2007). Early embryonic lethality of mice lacking the essential protein SNEV. Mol Cell Biol 27, 3123-3130. Fu, M., Wang, C., Reutens, A.T., Wang, J., Angeletti, R.H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M.L., and Pestell, R.G. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 275, 20853-20860. Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y.G., Chang, C., Hopp, T., Fuqua, S.A., Jaffray, E., Hay, R.T., Palvimo, J.J., Janne, O.A., Pestell, R.G. (2002). Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol Cell Biol 22, 3373-3388. Fuster, J.J., Sanz-Gonzalez, S.M., Moll, U.M., and Andres, V. (2007). Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13, 192-199. Gaughan, L., Logan, I.R., Cook, S., Neal, D.E., and Robson, C.N. (2002). Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277, 25904-25913. Golias, C., Iliadis, I., Peschos, D., and Charalabopoulos, K. (2009). Amplification and co-regulators of androgen receptor gene in prostate cancer. Exp Oncol 31, 3-8. Gregory, C.W., Hamil, K.G., Kim, D., Hall, S.H., Pretlow, T.G., Mohler, J.L., and French, F.S. (1998). Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58, 5718-5724. Grenert, J.P., Sullivan, W.P., Fadden, P., Haystead, T.A., Clark, J., Mimnaugh, E., Krutzsch, H., Ochel, H.J., Schulte, T.W., Sausville, E., et al. (1997). The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272, 23843-23850. Grigoryan, G., and Keating, A.E. (2008). Structural specificity in coiled-coil interactions. Curr Opin Struct Biol 18, 477-483. Haelens, A., Tanner, T., Denayer, S., Callewaert, L., and Claessens, F. (2007). The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res 67, 4514-4523. Haelens, A., Verrijdt, G., Callewaert, L., Christiaens, V., Schauwaers, K., Peeters, B., Rombauts, W., and Claessens, F. (2003). DNA recognition by the androgen receptor: evidence for an alternative DNA-dependent dimerization, and an active role of sequences flanking the response element on transactivation. Biochem J 369, 141-151. Hannon, G.J., and Rossi, J.J. (2004). Unlocking the potential of the human genome with RNA interference. Nature 431, 371-378. Heath, E.I., Hillman, D.W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, F., Gaskins, M., Pitot, H.C., Tan, W., Ivy, S.P., Pili, R., Carducci, M. A. , Erlichman, C., Liu, G. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14, 7940-7946. Heinlein, C.A., and Chang, C. (2002). Androgen receptor (AR) coregulators: an overview. Endocr Rev 23, 175-200. Hu, C.M., and Chang, Z.F. (2008). Synthetic lethality by lentiviral short hairpin RNA silencing of thymidylate kinase and doxorubicin in colon cancer cells regardless of the p53 status. Cancer Res 68, 2831-2840. Huang, J., Sengupta, R., Espejo, A.B., Lee, M.G., Dorsey, J.A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M.T., Jenuwein, T., Berger, S.L. (2007). p53 is regulated by the lysine demethylase LSD1. Nature 449, 105-108. Jaworski, T. (2006). Degradation and beyond: control of androgen receptor activity by the proteasome system. Cell Mol Biol Lett 11, 109-131. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J Clin 61, 69-90. Jeong, B.C., Hong, C.Y., Chattopadhyay, S., Park, J.H., Gong, E.Y., Kim, H.J., Chun, S.Y., and Lee, K. (2004). Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol Endocrinol 18, 13-25. Katayama, H., Sasai, K., Kawai, H., Yuan, Z.M., Bondaruk, J., Suzuki, F., Fujii, S., Arlinghaus, R.B., Czerniak, B.A., and Sen, S. (2004). Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36, 55-62. Kitagawa, M., Lee, S.H., and McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol Cell 29, 217-231. Klein, C., and Vassilev, L.T. (2004). Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 91, 1415-1419. Kleinridders, A., Pogoda, H.M., Irlenbusch, S., Smyth, N., Koncz, C., Hammerschmidt, M., and Bruning, J.C. (2009). PLRG1 is an essential regulator of cell proliferation and apoptosis during vertebrate development and tissue homeostasis. Mol Cell Biol 29, 3173-3185. Koptyra, M., Gupta, S., Talati, P., and Nevalainen, M.T. (2011). Signal transducer and activator of transcription 5a/b: biomarker and therapeutic target in prostate and breast cancer. Int J Biochem Cell Biol 43, 1417-1421. Lee, S.R., Ramos, S.M., Ko, A., Masiello, D., Swanson, K.D., Lu, M.L., and Balk, S.P. (2002). AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 16, 85-99. Levav-Cohen, Y., Haupt, S., and Haupt, Y. (2005). Mdm2 in growth signaling and cancer. Growth Factors 23, 183-192. Li, H., Ahonen, T.J., Alanen, K., Xie, J., LeBaron, M.J., Pretlow, T.G., Ealley, E.L., Zhang, Y., Nurmi, M., Singh, B., Martikainen, P.M., Nevalainen, M.T. (2004). Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res 64, 4774-4782. Li, L., Deng, B., Xing, G., Teng, Y., Tian, C., Cheng, X., Yin, X., Yang, J., Gao, X., Zhu, Y., et al. (2007). PACT is a negative regulator of p53 and essential for cell growth and embryonic development. Proc Natl Acad Sci U S A 104, 7951-7956. Li, X., Wang, J., and Manley, J.L. (2005). Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev 19, 2705-2714. Liao, G., Chen, L.Y., Zhang, A., Godavarthy, A., Xia, F., Ghosh, J.C., Li, H., and Chen, J.D. (2003). Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT. J Biol Chem 278, 5052-5061. Linja, M.J., Savinainen, K.J., Saramaki, O.R., Tammela, T.L., Vessella, R.L., and Visakorpi, T. (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61, 3550-3555. Liu, J., Zheng, Q., Deng, Y., Cheng, C.S., Kallenbach, N.R., and Lu, M. (2006). A seven-helix coiled coil. Proc Natl Acad Sci U S A 103, 15457-15462. Lu, X. (2005). p53: a heavily dictated dictator of life and death. Curr Opin Genet Dev 15, 27-33. Maass, N., Rosel, F., Schem, C., Hitomi, J., Jonat, W., and Nagasaki, K. (2002). Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer Lett 185, 219-223. Mabjeesh, N.J., Post, D.E., Willard, M.T., Kaur, B., Van Meir, E.G., Simons, J.W., and Zhong, H. (2002). Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res 62, 2478-2482. Mahajan, K.N., and Mitchell, B.S. (2003). Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci U S A 100, 10746-10751. Makarov, E.M., Makarova, O.V., Urlaub, H., Gentzel, M., Will, C.L., Wilm, M., and Luhrmann, R. (2002). Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205-2208. Makarova, O.V., Makarov, E.M., Urlaub, H., Will, C.L., Gentzel, M., Wilm, M., and Luhrmann, R. (2004). A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO J 23, 2381-2391. Marchenko, N.D., Wolff, S., Erster, S., Becker, K., and Moll, U.M. (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26, 923-934. Mimnaugh, E.G., Chavany, C., and Neckers, L. (1996). Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271, 22796-22801. Moll, U.M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17, 631-636. Momand, J., Jung, D., Wilczynski, S., and Niland, J. (1998). The MDM2 gene amplification database. Nucleic Acids Res 26, 3453-3459. Mooney, L.M., Al-Sakkaf, K.A., Brown, B.L., and Dobson, P.R. (2002). Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br J Cancer 87, 909-917. Nagasaki, K., Maass, N., Manabe, T., Hanzawa, H., Tsukada, T., Kikuchi, K., and Yamaguchi, K. (1999). Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer Lett 140, 219-226. Neckers, L. (2002). Heat shock protein 90 inhibition by 17-allylamino-17- demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer. Clin Cancer Res 8, 962-966. Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A., and Mann, M. (1998). Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 20, 46-50. O'Callaghan-Sunol, C., Gabai, V.L., and Sherman, M.Y. (2007). Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 67, 11779-11788. Ohi, M.D., and Gould, K.L. (2002). Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA 8, 798-815. Olsson, A., Manzl, C., Strasser, A., and Villunger, A. (2007). How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14, 1561-1575. Pluquet, O., Qu, L.K., Baltzis, D., and Koromilas, A.E. (2005). Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3beta. Mol Cell Biol 25, 9392-9405. Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65-75. Qi, C., Zhu, Y.T., Chang, J., Yeldandi, A.V., Rao, M.S., and Zhu, Y.J. (2005). Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun 328, 393-398. Rechsteiner, M., and Rogers, S.W. (1996). PEST sequences and regulation by proteolysis. Trends Biochem Sci 21, 267-271. Resnick-Silverman, L., and Manfredi, J.J. (2006). Gene-specific mechanisms of p53 transcriptional control and prospects for cancer therapy. J Cell Biochem 99, 679-689. Riley, T., Sontag, E., Chen, P., and Levine, A. (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9, 402-412. Russell, C.S., Ben-Yehuda, S., Dix, I., Kupiec, M., and Beggs, J.D. (2000). Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA 6, 1565-1572. Samuels-Lev, Y., O'Connor, D.J., Bergamaschi, D., Trigiante, G., Hsieh, J.K., Zhong, S., Campargue, I., Naumovski, L., Crook, T., and Lu, X. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8, 781-794. Scher, H.I., Beer, T.M., Higano, C.S., Anand, A., Taplin, M.E., Efstathiou, E., Rathkopf, D., Shelkey, J., Yu, E.Y., Alumkal, J., Hung, D., Hirmand, M., Seely, L., Morris, M.J., Danila, D.C., Humm, J., Larson, S., Fleisher, M., Sawyers, C.L. (2010). Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 375, 1437-1446. Scher, H.I., and Sawyers, C.L. (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23, 8253-8261. Schneider, C., Sepp-Lorenzino, L., Nimmesgern, E., Ouerfelli, O., Danishefsky, S., Rosen, N., and Hartl, F.U. (1996). Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci U S A 93, 14536-14541. Shangary, S., and Wang, S. (2008). Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14, 5318-5324. Shenk, J.L., Fisher, C.J., Chen, S.Y., Zhou, X.F., Tillman, K., and Shemshedini, L. (2001). p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction. J Biol Chem 276, 38472-38479. Shin, S., and Verma, I.M. (2003). BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci U S A 100, 7201-7206. Slee, E.A., O'Connor, D.J., and Lu, X. (2004). To die or not to die: how does p53 decide? Oncogene 23, 2809-2818. Solit, D.B., Scher, H.I., and Rosen, N. (2003). Hsp90 as a therapeutic target in prostate cancer. Semin Oncol 30, 709-716. Solit, D.B., Zheng, F.F., Drobnjak, M., Munster, P.N., Higgins, B., Verbel, D., Heller, G., Tong, W., Cordon-Cardo, C., Agus, D.B., Scher, H.I., Rosen, N. (2002). 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 8, 986-993. Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., and Pavletich, N.P. (1997). Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239-250. Tan, S.H., Dagvadorj, A., Shen, F., Gu, L., Liao, Z., Abdulghani, J., Zhang, Y., Gelmann, E.P., Zellweger, T., Culig, Z., Visakorpi, T., Bubendorf, L., Kirken, R.A., Karras, J., Nevalainen, M.T. (2008). Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res 68, 236-248. Tanner, T., Claessens, F., and Haelens, A. (2004). The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann N Y Acad Sci 1030, 587-592. Taplin, M.E., Bubley, G.J., Ko, Y.J., Small, E.J., Upton, M., Rajeshkumar, B., and Balk, S.P. (1999). Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59, 2511-2515. Taplin, M.E., Rajeshkumar, B., Halabi, S., Werner, C.P., Woda, B.A., Picus, J., Stadler, W., Hayes, D.F., Kantoff, P.W., Vogelzang, N.J., Small, E.J., Cancer and Leukemia Group B Study 9663. (2003). Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 21, 2673-2678. Thomas, C., Zoubeidi, A., Kuruma, H., Fazli, L., Lamoureux, F., Beraldi, E., Monia, B.P., MacLeod, A.R., Thuroff, J.W., and Gleave, M.E. (2011). Transcription factor Stat5 knockdown enhances androgen receptor degradation and delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 10, 347-359. Tsai, T.C., Lee, Y.L., Hsiao, W.C., Tsao, Y.P., and Chen, S.L. (2005). NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem 280, 20000-20009. Tsao, Y.P., Huang, S.J., Chang, J.L., Hsieh, J.T., Pong, R.C., and Chen, S.L. (1999). Adenovirus-mediated p21((WAF1/SDII/CIP1)) gene transfer induces apoptosis of human cervical cancer cell lines. J Virol 73, 4983-4990. Usmani, S.Z., Bona, R., and Li, Z. (2009). 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Curr Mol Med 9, 654-664. van der Kwast, T.H., Schalken, J., Ruizeveld de Winter, J.A., van Vroonhoven, C.C., Mulder, E., Boersma, W., and Trapman, J. (1991). Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 48, 189-193. Vanaja, D.K., Mitchell, S.H., Toft, D.O., and Young, C.Y. (2002). Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones 7, 55-64. Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanen, R., Palmberg, C., Palotie, A., Tammela, T., Isola, J., and Kallioniemi, O.P. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9, 401-406. Vousden, K.H. (2006). Outcomes of p53 activation--spoilt for choice. J Cell Sci 119, 5015-5020. Wahl, M.C., Will, C.L., and Luhrmann, R. (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701-718. Wang, Q., Lu, J., and Yong, E.L. (2001). Ligand- and coactivator-mediated transactivation function (AF2) of the androgen receptor ligand-binding domain is inhibited by the cognate hinge region. J Biol Chem 276, 7493-7499. Wang, W., and El-Deiry, W.S. (2008). Restoration of p53 to limit tumor growth. Curr Opin Oncol 20, 90-96. Wang, Z., Fukuda, S., and Pelus, L.M. (2004). Survivin regulates the p53 tumor suppressor gene family. Oncogene 23, 8146-8153. Welch, W.J., and Feramisco, J.R. (1982). Purification of the major mammalian heat shock proteins. J Biol Chem 257, 14949-14959. Whitesell, L., and Cook, P. (1996). Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. Mol Endocrinol 10, 705-712. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. (1978). Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 14, 725-731. Wolff, S., Erster, S., Palacios, G., and Moll, U.M. (2008). p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res 18, 733-744. Worsham, M.J., Pals, G., Schouten, J.P., Miller, F., Tiwari, N., van Spaendonk, R., and Wolman, S.R. (2006). High-resolution mapping of molecular events associated with immortalization, transformation, and progression to breast cancer in the MCF10 model. Breast Cancer Res Treat 96, 177-186. Yang, Y., Li, C.C., and Weissman, A.M. (2004). Regulating the p53 system through ubiquitination. Oncogene 23, 2096-2106. Zegarra-Moro, O.L., Schmidt, L.J., Huang, H., and Tindall, D.J. (2002). Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 62, 1008-1013. Zhang, N., Kaur, R., Lu, X., Shen, X., Li, L., and Legerski, R.J. (2005). The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 280, 40559-40567. Zhou, Z.X., He, B., Hall, S.H., Wilson, E.M., and French, F.S. (2002). Domain interactions between coregulator ARA(70) and the androgen receptor (AR). Mol Endocrinol 16, 287-300. Zhou, Z.X., Kemppainen, J.A., and Wilson, E.M. (1995). Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 9, 605-615. Zhou, Z.X., Sar, M., Simental, J.A., Lane, M.V., and Wilson, E.M. (1994). A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J Biol Chem 269, 13115-13123. Zilliacus, J., Wright, A.P., Carlstedt-Duke, J., and Gustafsson, J.A. (1995). Structural determinants of DNA-binding specificity by steroid receptors. Mol Endocrinol 9, 389-400. zur Hausen, H. (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342-350. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66481 | - |
dc.description.abstract | BCAS2是一個小分子量的核蛋白質(26kDa)。在前人的研究中發現其為雌性素受體的一個轉錄共同活化因子。本研究中我們發現BCAS2可以直接與p53蛋白質結合。在一般狀況下BCAS2會輕微且持續性地減低p53蛋白質進而降緩了p53蛋白質的轉錄活性。然而當DNA發生損傷時, BCAS2則顯著的減低p53蛋白質,藉由這樣的作用方式來抵抗doxorubicin這類化療藥物對細胞所造成的傷害。在p53野生型的細胞中,抑制BCAS2的表現會誘發細胞自裁作用,但是在不俱有p53或是p53突變型的細胞中,抑制BCAS2則會使細胞生長週期停滯在G2/M時期。在抑制p53野生型細胞中BCAS2的表現時,至少有兩個導制細胞自裁的作用機制被啟動,其一為增加了細胞核中p53蛋白質的滯留,進而啟動了細胞自裁相關基因的表現;其二為增加p53蛋白質上Ser46氨基酸磷酸化程度,藉此提高了p53蛋白質的轉錄活性,以及減少p53蛋白質上Ser315氨基酸磷酸化程度,從而降低了p53被降解的作用。
此外,BCAS2也是一個與雄性素受體結合的蛋白質,在雄性素受體所調控的基因表現中,其俱有轉錄共同因子的功能。在臨床攝護腺癌樣本的分析中,我們發現於攝護腺癌樣本中BCAS2蛋白質的表現俱有顯著性的上升趨勢,並且與雄性素受體的表現情形呈現正相關性。而進一步對於BCAS2導致雄性素受體蛋白質增加的機制的研究時,我們發現BCAS2增強雄性素受體蛋白質半衰期的原因,一部分是由於BCAS2抑制了p53蛋白質的表現進而提高了AR的轉錄活性,此為一個p53相關的轉錄調控途徑。而在不俱有p53的細胞中,BCAS2也可以增加雄性素受體蛋白質,顯示了還有另一個與p53非相關的蛋白酶體調控途徑的存在。此外,降低BCAS2表現時,可以增加攝護腺癌細胞對於抗癌藥物17-AAG的敏感性,這顯示利用BCAS2的干擾RNA與已知的抗癌藥物進行合併治療時,將有可能達到更有效力的治療結果。 總結以上的結果,我們發現BCAS2俱有雙重的角色,其一為p53蛋白質的負調控因子,另一則是雄性素受體的保護因子。這些結果顯示BCAS2 將來可以作為攝護腺癌的一個臨床診斷標記,並且可作為一個發展癌症治療藥物的重要標靶。 | zh_TW |
dc.description.abstract | BCAS2 is a small nuclear protein (26 kDa). It was reported previously as a transcriptional coactivator of estrogen receptor. Here, we report that BCAS2 directly interacts with p53 to reduce p53 transcriptional activity by mildly but consistently decreasing p53 protein in the normal condition. However, in the presence of DNA damage, BCAS2 prominently reduces p53 protein and provides protection against chemotherapeutic agent such as doxorubicin. Deprivation of BCAS2 induces apoptosis in p53 wild-type cells but causes G2/M arrest in p53-null or p53 mutant cells. There are at least two apoptosis mechanisms induced by silencing BCAS2 in wild-type p53-containing cells. Firstly, it increases p53 retention in nucleus that triggers the expression of apoptosis-related genes. Secondly, it increases p53 transcriptional activity by raising p53 phosphorylation at Ser46 and decreases p53 protein degradation by reducing p53 phosphorylation at Ser315.
Additionally, BCAS2 is AR interacting protein and functions as a transcription cofactor for AR-mediated gene expression. In clinical prostate cancer specimen analysis, we found that BCAS2 protein is significantly increased and positively correlates with AR level. To further study the mechanisms of BCAS2-increasing AR protein, we discovered that BCAS2 enhances AR protein half life partly from a p53-dependent transcriptional pathway, due to BCAS2 decreases p53 protein resulting in the raise of AR transcription activity. The other reason comes from p53-independent proteasomal pathway; due to BCAS2 can increase AR protein in p53 null cells. Furthermore the diminution of BCAS2 could enhance the sensitivity of prostate cancer cells to anticancer drug 17-AAG; suggesting RNAi targeting BCAS2 can be used in combination with known anti-cancer drugs for effective cancer treatment. In sum, we show that BCAS2 has a dual role one for a negative regulator of p53 and the other for a protector of AR. These results suggest that BCAS2 can be a diagnosis marker of prostate cancer that may be a critical target for developing therapeutic agents against cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:38:12Z (GMT). No. of bitstreams: 1 ntu-101-D95445007-1.pdf: 4904474 bytes, checksum: 7a45601a8197cde0782d7f468b4987b9 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III ABSTRACT V CONTENTS 1 CHAPTER 1 5 INTRODUCTION 5 1.1 AIMS OF THIS STUDY 9 1.1.1 Aim I. BCAS2 functions for p53 protein regulation 9 1.1.2 Aim II. BCAS2 functions for AR protein regulation 11 CHAPTER 2 14 MATERIALS AND METHODS 14 2.1 ANTIBODIES 14 2.2 PLASMID CONSTRUCTION 15 2.3 CELL CULTURE 16 2.4 TRANSFECTION 17 2.4.1 Electroporation Method 17 2.4.2 Calcium Phosphate Method 18 2.5 GST PULL-DOWN ASSAY 19 2.6 IN VITRO BINDING ASSAY 20 2.7 CO-IMMUNOPRECIPITATION AND WESTERN BLOT ANALYSIS 21 2.8 TRANSIENT-TRANSFECTION AND LUCIFERASE ASSAY 22 2.9 NUCLEAR/CYTOPLASM FRACTION 23 2.10 RNA EXTRACTION AND REVERSE TRANSCRIPTION 24 2.11 REAL-TIME QUANTITATIVE PCR 25 2.12 CHROMATIN IMMUNOPRECIPITATION-QUANTITATIVE PCR ASSAY 27 2.13 IMMUNOFLUORESCENCE STAINING ASSAY 28 2.14 CELL CYCLE ANALYSIS 28 2.15 CELL PROLIFERATION ASSAY 29 2.16 IMMUNOHISTOCHEMISTRY STAINING ASSAY 30 2.17 DRUG SENSITIVITY ANALYSIS BY MTT ASSAY 30 2.18 RECOMBINANT LENTIVIRUS PRODUCTION AND INFECTION 31 2.19 STATISTICAL ANALYSIS 32 CHAPTER 3 33 RESULTS 33 3.1 PART I. BCAS2, A NOVEL REGULATOR OF THE P53 TUMOR SUPPRESSOR 33 3.1.1 Protein-protein interaction between BCAS2 and p53 tumor suppressor 33 3.1.2 Overexpression of BCAS2 reduces p53 protein and transcriptional activity 34 3.1.3 Reciprocal binding domains between BCAS2 and p53 36 3.1.4 Depletion of BCAS2 affects p53-dependent transcription 37 3.1.5 Reducing BCAS2 expression affects p53 protein stability, nuclear retention and post-translational modifications 39 3.1.6 Reducing the expression of BCAS2 increases p53-dependent apoptosis in cancer cells 42 3.1.7 Ectopic overexpression of BCAS2 rescues p53-mediated growth inhibition 44 3.2 PART II. BCAS2 INCREASE AR PROTEIN ACTIVITY VIA P53-DEPENDENT TRANSCRIPTION AND INHIBITION OF PROTEASOME DEGRADATION 46 3.2.1 BCAS2 and AR expression are significantly associated with prostate cancer 46 3.2.2 BCAS2 and AR physically interact in prostate cancer cells 47 3.2.3 BCAS2 enhances AR mRNA and protein activity in prostate cancer cells through a p53-dependent pathway 48 3.2.4 BCAS2 can also enhance AR protein activity in prostate cancer cells through a p53-independent pathway 50 3.2.5 BCAS2 rescues AR protein degradation by HSP90 inhibitor treatment 53 3.2.6 Knockdown BCAS2 can increase 17-AAG cancer drug sensitivity to inhibit prostate cancer cell proliferation 55 CHAPTER 4 56 DISCUSSION 56 4.1 PART I. BCAS2, A NOVEL REGULATOR OF THE P53 TUMOR SUPPRESSOR 56 4.2 PART II. BCAS2 INCREASE AR PROTEIN ACTIVITY VIA P53-DEPENDENT TRANSCRIPTION AND INHIBITION OF PROTEASOME DEGRADATION 60 CHAPTER 5 69 CONCLUSION 69 CHAPTER 6 71 FIGURES AND TABLES 71 6.1 FIGURES 72 Figure 1. Interaction between BCAS2 and p53 in vitro and in vivo. 72 Figure 2. BCAS2-p53 complexes repress p53-mediated p21 promoter activity. 73 Figure 3. Analysis of the mutual binding domains between BCAS2 and p53 proteins. 74 Figure 4. Depletion of BCAS2 expression increases the p53 transcriptional activity. 76 Figure 5. Effect of BCAS2 on p53 protein stability, nuclear retention, and post-translational modifications. 78 Figure 6. Biological significance of BCAS2 effects. 80 Figure 7. BCAS2 and AR were significantly overexpressed in prostate cancerous tissues. 82 Figure 8. BCAS2 associates with AR both in vitro and in vivo. 84 Figure 9. BCAS2 enhances AR mRNA, protein and transcriptional activity via p53-dependent in LNCaP cells. 86 Figure 10. BCAS2 increases AR protein in p53-independent pathway. 89 Figure 11. BCAS2 enhances AR protein stability. 90 Figure 12. Identify the BCAS2 interaction domains of AR. 92 Figure 13. BCAS2 rescues nuclear and cytosol AR protein degradation induced by geldanamycin in LNCaP cells. 93 Figure 14. BCAS2 RNAi can increase drug sensitivity of HSP90 inhibitor 17-AAG. 94 6.2 TABLES 95 Table 1. Identification of siRNA constructs against BCAS2. 95 Table 2. Cell cycle analysis of MCF-7 cells (wt p53) treated with shRNA construct of BCAS2 at 72 hr post-transfection. 96 Table 3. Cell cycle analysis of H1299 cells (null p53) treated with various shRNA constructs against BCAS2 at 96 hr post-transfection. 97 Table 4. Cell cycle analysis of C33A (mutant p53) cells treated with various shRNA constructs against BCAS2 at 96 hr post-transfection. 98 Table 5. Cell cycle analysis of MCF-7 cells treated with the various shRNA constructs of BCAS2 and p53, from three independent experiments described in Figure 6E. 99 Table 6. Cell cycle analysis of MCF-7 cells, rescued from doxorubicin-induced growth arrest by BCAS2 expression, from three independent experiments shown in Figure 6F. 100 CHAPTER 7 101 REFERENCES 101 CHAPTER 8 115 APPENDIX 115 | |
dc.language.iso | en | |
dc.title | BCAS2調控p53與雄性素受體蛋白質功能之研究 | zh_TW |
dc.title | BCAS2 Regulates the p53 and Androgen Receptor Proteins' Functions | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顧記華(Jih-Hwa Guh),葉秀慧(Shiou-Hwei Yeh),李明學(Ming-Shyue Lee),吳君泰(June-Tai Wu) | |
dc.subject.keyword | BCAS2,p53,p21,雄性素受體,攝護腺癌,細胞自裁, | zh_TW |
dc.subject.keyword | BCAS2,p53,p21,Androgen receptor,Prostate cancer,Apoptosis, | en |
dc.relation.page | 131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-01-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
Appears in Collections: | 微生物學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-101-1.pdf Restricted Access | 4.79 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.