請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66457
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張顏暉 | |
dc.contributor.author | Yu-Wei Lin | en |
dc.contributor.author | 林昱位 | zh_TW |
dc.date.accessioned | 2021-06-17T00:36:46Z | - |
dc.date.available | 2014-02-16 | |
dc.date.copyright | 2012-02-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-01 | |
dc.identifier.citation | [1] Ⅱ-Ⅵ SEMICONDUCTIR COMPOUNDS, Mukesh Jain (1993)
[2] Properties of Wide bandgap Ⅱ-Ⅵ Semiconductors, Ramesh Bhargava (1997) [3] Springer Handbook of Electronic and Photonic Materials, Kasap Safa and Capper Peter (2007) [4] K. Wang et al., Adv. Mater. 20, 3248 (2008) [5] V. Consonni et al., Appl. Phys. Lett. 98, 111906 (2011) [6] K. Wang et al., Appl. Phys. Lett. 96, 123105 (2010) [7] J. Schrier et al., Nano Lett. 7, 2377-2382 (2007) [8] Semiconductor physics and devices: basic principles, Donald A. Neamen (2003) [9] J. C. Wu, Master thesis, National Taiwan University (2010). [10] J. H. Zeng et al., Acta Materialia 57, 1813-1820 (2009). [11] H. Y. Chao, Ph.D. thesis, National Taiwan University (2010). [12] http://en.wikipedia.org/wiki/Scanning_electron_microscope [13] X. W. Sun et al., Nano Lett. 8, 1219 (2008) [14] C. Y. Lu., Appl. Phys. Lett. 89, 153101 (2006) [15] M. Law et al., Nat Mater 4, 455 (2005) [16] Y. J. Lee et al., Nano Lett. 8, 1501 (2008) [17] X. Wang et al., ACS Nano 4, 3302 (2010) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66457 | - |
dc.description.abstract | 核殼奈米線陣列的堆疊異質接面近年來吸引了許多注意,因為它與一般的平面元件相比有較高的表面積跟體積比和較好的光捕捉性質。更重要的是因為它的能帶結構可使電子和電洞分離到不同的區域,藉此可以增加載子生命期。
此論文主要研究氧化鋅/碲化鋅的核殼奈米線成長和晶體結構、光學、電學等性質。藉由化學氣相沉積和有機金屬化學氣相沉積,氧化鋅/碲化鋅核殼奈米線陣列垂直成長於透明導電玻璃基板上。接著使用掃描式電子顯微鏡、穿透式電子顯微鏡和X光繞射儀了解晶體結構,再藉由光致螢光量測和穿透光譜了解光學性質。 利用氧化鋅/碲化鋅核殼奈米線陣列,製作一個光伏元件來研究它的光電特性。測量電流密度跟電壓的曲線圖和隨時變電流密度變化,結果顯示照光下的光電流會變大且反應時間也變快,由此可證明載子可在堆疊異質接面中分離。 | zh_TW |
dc.description.abstract | Type Ⅱ heterojunction core-shell nanowire arrays have attracted much attention recently because they have advantages over conventional planar devices, such as higher surface-to-volume ratio and better light-trapping effect. Moreover, because of the type-II band alignment, electrons and holes are naturally separated into different spatial regions in these nanowire structures and thus the carrier lifetime is increased in these structures as compared with the normal devices.
In this thesis, we report the growth and characterization of ZnO/ ZnTe core-shell nanostructure. Vertically aligned ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates were fabricated by using chemical vapor deposition (CVD) to grow the ZnO core and metal organic chemical vapor deposition (MOCVD) was used to deposit the ZnTe shell. The morphology of ZnO/ZnTe core/shell nanowire arrays were studied by scanning electron microscope (SEM); the detailed atomic arrangement of the ZnO/ZnTe core/shell nanowire was investigated by transmission electron microscopy (TEM). The crystal structures of ZnO/ZnTe core/shell nanowires were characterized by X-ray diffraction (XRD). The optical properties of ZnO/ZnTe core/shell nanowire arrays were investigated by photoluminescence (PL) and transmission studies. The ZnO/ZnTe core/shell nanowires arrays were then used as the active layer and carrier transport medium to fabricate a photovoltaic device. The current density versus potential curve and time-dependent photocurrent density were measured for this device. The results showed the ZnO/ZnTe core/shell nanowire array has enhanced photocurrent and good photocurrent response under light illumination, indicating the nanowire arrays can be made into a good photovoltaic device. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:36:46Z (GMT). No. of bitstreams: 1 ntu-101-R98245016-1.pdf: 8309837 bytes, checksum: 1465c8ba2deb2a649f49f1bfa9b329dc (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Chapter 1 Introduction
1.1 Ⅱ-Ⅵ compound semiconductors .………………………………………...............1 1.2 Core-shell nanowires with Type Ⅱ band alignment ……………….……………..4 Chapter 2 Theory 2.1 Semiconductor Heterojunction ……………………………………………………6 2.2 Current-voltage Characteristics …………………………………………………...8 Chapter 3 Experimental techniques 3.1 Chemical Vapor Deposition (CVD) ………………………………………………9 3.2 Metal Organic Chemical Vapor Deposition (MOCVD) …………………………10 3.3 Scanning Electron Microscopy (SEM) …………………………………………..13 3.4 Photoluminescence (PL) ………………………………………………………...15 3.5 X-ray diffraction (XRD) ........................................................................................16 3.6 Transmission electron microscopy (TEM) ............................................................17 3.7 UV/VIS/NIR spectrophotometer ...........................................................................18 3.8 Sputtering ………………………………………………………………………..18 3.9 I-V Measurement system ………………………………………………………...19 Chapter 4 Experimental methods 4.1 Method of cleaning a substrate …………………………………………………..20 4.2 Growth of ZnO nanowire arrays by chemical vapor deposition (CVD)………....21 4.3 Deposition of ZnTe on ZnO nanowire arrays by metal organic chemical vapor deposition (MOCVD) ……………………………………………………………24 4.4 Fabrication of a photovoltaic device …………………………………………….24 Chapter 5 Results and discussion 5.1 Growth of ZnO nanowire arrays by chemical vapor deposition (CVD) ………...26 5.1.1 Structural properties of ZnO nanowire arrays ……………………………..26 5.1.2 Optical properties of ZnO nanowire arrays ………………………………..31 5.1.3 Effects of the distance between the zinc powders and the substrate ………33 5.2 Deposition of ZnTe on ZnO nanowire arrays by metal organic chemical vapor deposition (MOCVD) ……………………………………………………………36 5.2.1 Structural properties of ZnO/ZnTe core/shell nanowire arrays…………….36 5.2.2 Optical properties of ZnO/ZnTe core/shell nanowire arrays……………….49 5.3 Photocurrent of ZnO/ZnTe core/shell nanowire arrays..........................................51 Chapter 6 Conclusions……………………………………………………….54 References...……………………………………………………………………….55 | |
dc.language.iso | en | |
dc.title | 氧化鋅/碲化鋅 核殼奈米線陣列於透明氧化導電玻璃基板上成長與特性分析 | zh_TW |
dc.title | Growth and Characterization of ZnO/ZnTe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Glass Substrates | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳永芳,梁啟德 | |
dc.subject.keyword | 氧化鋅,碲化鋅,堆疊異質接面,核殼結構,奈米線陣列,透明導電玻璃,光伏元件, | zh_TW |
dc.subject.keyword | ZnO,ZnTe,Type-II heterojunction,core-shell,nanowire arrays,TCO,photovoltaic device, | en |
dc.relation.page | 55 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-02 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 8.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。