Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳水田
dc.contributor.authorKam-Fei Wongen
dc.contributor.author黃錦輝zh_TW
dc.date.accessioned2021-06-17T00:36:43Z-
dc.date.available2013-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-01
dc.identifier.citation1. Cerniglia, C.E., Biodegradation of Organic Contaminants - Overview and Examples with Polycyclic Aromatic-Hydrocarbons. Abstracts of Papers of the American Chemical Society, 1990. 199: p. 136-ENVR.
2. Chen, T.C., et al., BPA occurred in Kao-Pin River and its tributaries in Taiwan. Environmental Monitoring and Assessment, 2010. 161(1-4): p. 135-145.
3. Li, X., et al., Simultaneous determination and assessment of 4-nonylphenol, BPA and triclosan in tap water, bottled water and baby bottles. Environ Int, 2010. 36(6): p. 557-62.
4. Cousins, I.T., et al., A multimedia assessment of the environmental fate of BPA. Human and Ecological Risk Assessment, 2002. 8(5): p. 1107-1135.
5. Staples, C.A., et al., A weight of evidence approach to the aquatic hazard assessment of BPA. Human and Ecological Risk Assessment, 2002. 8(5): p. 1083-1105.
6. Welshons, W.V., S.C. Nagel, and F.S. vom Saal, Large effects from small exposures. III. Endocrine mechanisms mediating effects of BPA at levels of human exposure. Endocrinology, 2006. 147(6): p. S56-S69.
7. Olea, N., P. Pazos, and J. Exposito, Inadvertent exposure to xenoestrogens. European Journal of Cancer Prevention, 1998. 7: p. S17-S23.
8. Segner, H., et al., Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicology and Environmental Safety, 2003. 54(3): p. 302-314.
9. Sugita-Konishi, Y., et al., Effect of BPA on non-specific immunodefenses against non-pathogenic Escherichia coli. Toxicology Letters, 2003. 136(3): p. 217-227.
10. Staples, C.A., et al., A review of the environmental fate, effects, and exposures of BPA. Chemosphere, 1998. 36(10): p. 2149-2173.
11. Alexander, M., Biodegradation and bioremediation. 2nd ed1999, San Diego: Academic Press. xiv, 453 p.
12. Klein, J., et al., Biological processing of fossil fuels - Resume of the bioconversion session of ICCS'97. Applied Microbiology and Biotechnology, 1999. 52(1): p. 2-15.
13. Lobos, J.H., T.K. Leib, and T.M. Su, Biodegradation of Bisphenol-a and Other Bisphenols by a Gram-Negative Aerobic Bacterium. Applied and Environmental Microbiology, 1992. 58(6): p. 1823-1831.
14. Sasaki, M., et al., Biodegradation of BPA by cells and cell lysate from Sphingomonas sp strain AO1. Biodegradation, 2005. 16(5): p. 449-459.
15. Ike, M., C.S. Jin, and M. Fujita, Biodegradation of BPA in the aquatic environment. Water Science and Technology, 2000. 42(7-8): p. 31-38.
16. Kang, J.H. and F. Kondo, BPA degradation by bacteria isolated from river water. Archives of Environmental Contamination and Toxicology, 2002. 43(3): p. 265-269.
17. Kang, J.H. and F. Kondo, Effects of bacterial counts and temperature on the biodegradation of BPA in river water. Chemosphere, 2002. 49(5): p. 493-498.
18. Kang, J.H., N. Ri, and F. Kondo, Streptomyces sp strain isolated from river water has high BPA degradability. Letters in Applied Microbiology, 2004. 39(2): p. 178-180.
19. Spivack, J., T.K. Leib, and J.H. Lobos, Novel Pathway for Bacterial Metabolism of Bisphenol-a - Rearrangements and Stilbene Cleavage in Bisphenol-a Metabolism. Journal of Biological Chemistry, 1994. 269(10): p. 7323-7329.
20. Furhacker, M., S. Scharf, and H. Weber, BPA: emissions from point sources. Chemosphere, 2000. 41(5): p. 751-756.
21. Guo, W.Q., et al., Isolation and description of a stable carbazole-degrading microbial consortium consisting of Chryseobacterium sp NCY and Achromobacter sp. NCW. Current Microbiology, 2008. 57(3): p. 251-257.
22. Weissenfels, W.D., M. Beyer, and J. Klein, Degradation of Phenanthrene, Fluorene and Fluoranthene by Pure Bacterial Cultures. Applied Microbiology and Biotechnology, 1990. 32(4): p. 479-484.
23. Casellas, M., et al., New metabolites in the degradation of fluorene by Arthrobacter sp strain F101. Applied and Environmental Microbiology, 1997. 63(3): p. 819-826.
24. Seo, J.S., et al., Phenanthrene degradation in Arthrobacter sp P1-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere, 2006. 65(11): p. 2388-2394.
25. Seo, J.S., et al., Degradation of dibenzothiophene and carbazole by Arthrobacter sp P1-1. International Biodeterioration & Biodegradation, 2006. 58(1): p. 36-43.
26. Samanta, S.K., A.K. Chakraborti, and R.K. Jain, Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology, 1999. 53(1): p. 98-107.
27. Kazunga, C. and M.D. Aitken, Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Applied and Environmental Microbiology, 2000. 66(5): p. 1917-1922.
28. Kang, H., et al., Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can J Microbiol, 2003. 49(2): p. 139-44.
29. Balashova, N.V., et al., Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochemistry, 1999. 35(3-4): p. 291-296.
30. Laurie, A.D. and G. Lloyd-Jones, Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochemical and Biophysical Research Communications, 1999. 262(1): p. 308-314.
31. Kim, T.J., et al., Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World Journal of Microbiology & Biotechnology, 2003. 19(4): p. 411-417.
32. Wong, J.W.C., et al., Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air and Soil Pollution, 2002. 139(1-4): p. 1-13.
33. Denef, V.J., et al., Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol, 2005. 187(23): p. 7996-8005.
34. Wang, B.J., et al., A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp P1. Environmental Microbiology, 2008. 10(8): p. 1948-1963.
35. Yamazoe, A., O. Yagi, and H. Oyaizu, Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp strain YY-1. Applied Microbiology and Biotechnology, 2004. 65(2): p. 211-218.
36. Hedlund, B.P., A.D. Geiselbrecht, and J.T. Staley, Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. Fems Microbiology Letters, 2001. 201(1): p. 47-51.
37. Cheung, P.Y. and B.K. Kinkle, Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl Environ Microbiol, 2001. 67(5): p. 2222-9.
38. Lee, S.E., et al., Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics, 2007. 7(12): p. 2059-69.
39. Heitkamp, M.A., W. Franklin, and C.E. Cerniglia, Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol, 1988. 54(10): p. 2549-55.
40. Heitkamp, M.A., et al., Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol, 1988. 54(10): p. 2556-65.
41. Jimenez, I.Y. and R. Bartha, Solvent-Augmented Mineralization of Pyrene by a Mycobacterium sp. Appl Environ Microbiol, 1996. 62(7): p. 2311-6.
42. Grosser, R.J., D. Warshawsky, and J.R. Vestal, Indigenous and enhanced mineralization of pyrene, benzo [a]pyrene, and carbazole in soils. Appl Environ Microbiol, 1991. 57(12): p. 3462-9.
43. Fritzsche, C., Degradation of Pyrene at Low Defined Oxygen Concentrations by a Mycobacterium Sp. Applied and Environmental Microbiology, 1994. 60(5): p. 1687-1689.
44. Lee, S.E., et al., Fluoranthene metabolism and associated proteins in Mycobacterium sp JS14. Proteomics, 2007. 7(12): p. 2059-2069.
45. Rehmann, K., et al., Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere, 1998. 36(14): p. 2977-2992.
46. Vila, J., et al., Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp strain AP1: Actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 2001. 67(12): p. 5497-5505.
47. Krivobok, S., et al., Identification of pyrene-induced proteins in Mycobacterium sp strain 6PY1: Evidence for two ring-hydroxylating dioxygenases. Journal of Bacteriology, 2003. 185(13): p. 3828-3841.
48. Schneider, J., et al., Degradation of pyrene, benz [a]anthracene, and benzo [a]pyrene by Mycobacterium sp strain RJGII-135, isolated from a former coal gasification site (vol 62, pg 14, 1996). Applied and Environmental Microbiology, 1996. 62(4): p. 1491-1491.
49. Moody, J.D., et al., Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp strain PYR-1. Applied and Environmental Microbiology, 2001. 67(4): p. 1476-1483.
50. Kelley, I., et al., Identification of Metabolites from the Degradation of Fluoranthene by Mycobacterium Sp Strain Pyr-1. Applied and Environmental Microbiology, 1993. 59(3): p. 800-806.
51. Sepic, E., M. Bricelj, and H. Leskovsek, Degradation of fluoranthene by Pasteurella sp IFA and Mycobacterium sp PYR-1: isolation and identification of metabolites. Journal of Applied Microbiology, 1998. 85(4): p. 746-754.
52. Ramirez, N., T. Cutright, and L.K. Ju, Pyrene biodegradatin in aqueous solutions and soil slurries by Mycobacterium PYR-1 and enriched consortium. Chemosphere, 2001. 44(5): p. 1079-1086.
53. Kazunga, C. and M.D. Aitken, Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria (vol 66, pg 1917, 2000). Applied and Environmental Microbiology, 2000. 66(10): p. 4598-4598.
54. van Herwijnen, R., et al., Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid (vol 69, pg 186, 2003). Applied and Environmental Microbiology, 2003. 69(5): p. 3026-3026.
55. Boldrin, B., A. Tiehm, and C. Fritzsche, Degradation of Phenanthrene, Fluorene, Fluoranthene, and Pyrene by a Mycobacterium Sp. Applied and Environmental Microbiology, 1993. 59(6): p. 1927-1930.
56. Churchill, S.A., J.P. Harper, and P.F. Churchill, Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Applied and Environmental Microbiology, 1999. 65(2): p. 549-552.
57. Guerin, W.F. and G.E. Jones, Mineralization of Phenanthrene by a Mycobacterium Sp. Applied and Environmental Microbiology, 1988. 54(4): p. 937-944.
58. Rehmann, K., N. Hertkorn, and A.A. Kettrup, Fluoranthene metabolism in Mycobacterium sp strain KR20: identity of pathway intermediates during degradation and growth. Microbiology-Sgm, 2001. 147: p. 2783-2794.
59. Dean-Ross, D., J. Moody, and C.E. Cerniglia, Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. Fems Microbiology Ecology, 2002. 41(1): p. 1-7.
60. DeanRoss, D. and C.E. Cerniglia, Degradation of pyrene by Mycobacterium flavescens. Applied Microbiology and Biotechnology, 1996. 46(3): p. 307-312.
61. Kim, Y.H., et al., Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Applied Microbiology and Biotechnology, 2005. 67(2): p. 275-285.
62. Moody, J.D., et al., Regio- and stereoselective metabolism of 7,12-dimethylbenz [a]anthracene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 2003. 69(7): p. 3924-3931.
63. Miller, C.D., et al., Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microbial Ecology, 2004. 48(2): p. 230-238.
64. Inoue, K., et al., Characterization of novel carbazole catabolism genes from gram-positive carbazole degrader Nocardioides aromaticivorans IC177. Appl Environ Microbiol, 2006. 72(5): p. 3321-9.
65. Sepic, E. and H. Leskovsek, Isolation and identification of fluoranthene biodegradation products. Analyst, 1999. 124(12): p. 1765-1769.
66. Pumphrey, G.M. and E.L. Madsen, Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2. Microbiology, 2007. 153(Pt 11): p. 3730-8.
67. Denome, S.A., et al., Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol, 1993. 175(21): p. 6890-901.
68. Prabhu, Y. and P.S. Phale, Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol, 2003. 61(4): p. 342-51.
69. Samanta, S.K., A.K. Chakraborti, and R.K. Jain, Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol, 1999. 53(1): p. 98-107.
70. Bressler, D.C. and P.M. Fedorak, Purification, stability, and mineralization of 3-hydroxy-2- formylbenzothiophene, a metabolite of dibenzothiophene. Appl Environ Microbiol, 2001. 67(2): p. 821-6.
71. Chavez, F.P., H. Lunsdorf, and C.A. Jerez, Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol, 2004. 70(5): p. 3064-72.
72. Fortnagel, P., et al., Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27. Appl Environ Microbiol, 1990. 56(4): p. 1148-56.
73. Habe, H., et al., Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Applied and Environmental Microbiology, 2001. 67(8): p. 3610-3617.
74. Resnick, S.M. and D.T. Gibson, Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816-4. Applied and Environmental Microbiology, 1996. 62(11): p. 4073-4080.
75. Grifoll, M., S.A. Selifonov, and P.J. Chapman, Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl Environ Microbiol, 1994. 60(7): p. 2438-49.
76. Kiyohara, H., et al., Cloning and Characterization of a Chromosomal Gene-Cluster, Pah, That Encodes the Upper Pathway for Phenanthrene and Naphthalene Utilization by Pseudomonas-Putida Ous82. Journal of Bacteriology, 1994. 176(8): p. 2439-2443.
77. Mahajan, M.C., P.S. Phale, and C.S. Vaidyanathan, Evidence for the Involvement of Multiple Pathways in the Biodegradation of 1-Methylnaphthalene and 2-Methylnaphthalene by Pseudomonas-Putida Csvs6. Archives of Microbiology, 1994. 161(5): p. 425-433.
78. Caldini, G., et al., The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Applied Microbiology and Biotechnology, 1995. 44(1-2): p. 225-229.
79. Romero, M.C., et al., Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental Pollution, 1998. 101(3): p. 355-359.
80. Becher, D., et al., Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp strain SBUG 290. Applied and Environmental Microbiology, 2000. 66(10): p. 4528-4531.
81. Zhou, N.Y., et al., Salicylate 5-hydroxylase from Ralstonia sp strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. Journal of Bacteriology, 2002. 184(6): p. 1547-1555.
82. Kanaly, R.A., S. Harayama, and K. Watanabe, Rhodanobacter sp strain BPC1 in a benzo [a]pyrene-mineralizing bacterial consortium. Applied and Environmental Microbiology, 2002. 68(12): p. 5826-5833.
83. Dean-Ross, D., J. Moody, and C.E. Cerniglia, Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol, 2002. 41(1): p. 1-7.
84. Walter, U., et al., Degradation of Pyrene by Rhodococcus Sp Uw1. Applied Microbiology and Biotechnology, 1991. 34(5): p. 671-676.
85. Kirimura, K., et al., Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp strain WU-K2R. Applied and Environmental Microbiology, 2002. 68(8): p. 3867-3872.
86. Folsom, B.R., et al., Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Applied and Environmental Microbiology, 1999. 65(11): p. 4967-4972.
87. Matsubara, T., et al., Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Applied and Environmental Microbiology, 2001. 67(3): p. 1179-1184.
88. Mallick, S., S. Chatterjee, and T.K. Dutta, A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2 '-hydroxyphenyl)pent-4-enoic acid. Microbiology-Sgm, 2007. 153: p. 2104-2115.
89. Boonchan, S., M.L. Britz, and G.A. Stanley, Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnology and Bioengineering, 1998. 59(4): p. 482-494.
90. Boonchan, S., M.L. Britz, and G.A. Stanley, Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 2000. 66(3): p. 1007-1019.
91. Juhasz, A.L., G.A. Stanley, and M.L. Britz, Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology, 2000. 30(5): p. 396-401.
92. Juhasz, A.L., G.A. Stanley, and M.L. Britz, Metabolite repression inhibits degradation of benzo [a]pyrene and dibenz [a,h]anthracene by Stenotrophomonas maltophilia VUN 10,003. Journal of Industrial Microbiology & Biotechnology, 2002. 28(2): p. 88-96.
93. Rentz, J.A., P.J.J. Alvarez, and J.L. Schnoor, Benzo [a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environmental Pollution, 2008. 151(3): p. 669-677.
94. Pinyakong, O., et al., Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp strain P2. Biochemical and Biophysical Research Communications, 2003. 301(2): p. 350-357.
95. van Herwijnen, R., et al., Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp strain LB126 in chemostat cultures. Fems Microbiology Ecology, 2003. 46(1): p. 105-111.
96. van Herwijnen, R., et al., Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp LB126. Research in Microbiology, 2003. 154(3): p. 199-206.
97. Pinyakong, O., et al., Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp strain P2. Fems Microbiology Letters, 2000. 191(1): p. 115-121.
98. Gai, Z.H., et al., Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp strain. Applied and Environmental Microbiology, 2007. 73(9): p. 2832-2838.
99. Story, S.P., et al., Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505. Journal of Industrial Microbiology & Biotechnology, 2001. 26(6): p. 369-382.
100. Mueller, J.G., et al., Isolation and Characterization of a Fluoranthene-Utilizing Strain of Pseudomonas-Paucimobilis. Applied and Environmental Microbiology, 1990. 56(4): p. 1079-1086.
101. Nam, I.H., et al., Biotransformation of 1,2,3-Tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1. Applied and Environmental Microbiology, 2006. 72(1): p. 112-116.
102. Habe, H., et al., Characterization of the upper pathway genes for fluorene metabolism in Terrabacter sp strain DBF63. Journal of Bacteriology, 2004. 186(17): p. 5938-5944.
103. Habe, H., et al., Degradation characteristics of a dibenzofuran-degrader Terrabacter sp. strain DBF63 toward chlorinated dioxins in soil. Chemosphere, 2002. 48(2): p. 201-7.
104. Sakurai, A., S. Toyoda, and M. Sakakibara, Removal of BPA by polymerization and precipitation method using Coprinus cinereus peroxidase. Biotechnology Letters, 2001. 23(12): p. 995-998.
105. Chen, M.Y., M. Ike, and M. Fujita, Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environmental Toxicology, 2002. 17(1): p. 80-86.
106. Ying, G.G. and R.S. Kookana, Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment. Environmental Science & Technology, 2003. 37(7): p. 1256-1260.
107. Kang, J.H. and F. Kondo, BPA degradation in seawater is different from that in river water. Chemosphere, 2005. 60(9): p. 1288-1292.
108. Gorg, A., W. Weiss, and M.J. Dunn, Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004. 4(12): p. 3665-3685.
109. Conrotto, P. and S. Souchelnytskyi, Proteomic approaches in biological and medical sciences: principles and applications. Exp Oncol, 2008. 30(3): p. 171-80.
110. Oshiman, K., et al., Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades BPA. Biodegradation, 2007. 18(2): p. 247-255.
111. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
112. Lobos, J.H., T.K. Leib, and T.M. Su, Biodegradation of BPA and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol, 1992. 58(6): p. 1823-31.
113. Spivack, J., T.K. Leib, and J.H. Lobos, Novel pathway for bacterial metabolism of BPA. Rearrangements and stilbene cleavage in BPA metabolism. J Biol Chem, 1994. 269(10): p. 7323-9.
114. Suenaga, H., et al., Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis. ISME J, 2009. 3(12): p. 1335-48.
115. Kimura, N., et al., Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol, 1997. 179(12): p. 3936-43.
116. Suen, W.C. and D.T. Gibson, Isolation and preliminary characterization of the subunits of the terminal component of naphthalene dioxygenase from Pseudomonas putida NCIB 9816-4. J Bacteriol, 1993. 175(18): p. 5877-81.
117. Webster, J.A., et al., Elemental composition of bacterial metachromatic inclusions determined by electron microprobe X-ray analysis. J Bacteriol, 1984. 158(2): p. 441-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66456-
dc.description.abstract雙酚 A(BPA)據之前研究指出,對生物具有雌激素活性和毒性。本篇論文中,篩選出具有降解雙酚 A的降解菌株Rhodococcus pyridinivorans (PDB9)。生物降解菌株生長在具基本鹽類的培養液中,內含有雙酚 A(50毫克/升)作為唯一碳源的培養基,菌株48小時內降解90%的雙酚 A。藉由高壓液相層析儀(High-performance liquid chromatography)及液相層析串聯質譜儀(Liquid Chromatography/Mass Spectrometry),鑑定降解後的中間產物,其中鑑定出四個中間產物。藉由二維電泳(Two Dimensional Electrophoresis),膠體內水解(In-gel digestion),質譜分析,並利用2D-ImagesMaster分析軟體,鑑定出與對造組有差異的蛋白質與酵素,其中包括五個差異蛋白質,分別為N-二甲基亞硝胺甲醇去氫酶(NDMA-dependent methanol dehydrogenase),延長因子Tu (Elongation factor Tu),半胱氨酸合酶(Cysteine synthase),電子轉移黃素蛋白β/α亞基(Electron transfer flavoprotein beta/alpha subunit),ATP依賴蛋白降解酶(ATP-dependent Clp protease proteolytic subunit)。我們已經分離了一株雙酚A降解菌Rhodococcus pyridinivorans,這幾乎可以在48小時內完全降解50mg/L BPA。此外,使用液相質譜,我們發現了一種新的降解途徑。藉由以上實驗技術,可以運用在之後生物催化與生物降解等探討。zh_TW
dc.description.abstractBisphenol A (BPA) has been reported has an estrogenic activity and toxicity to aquatic organisms. This study was conducted to show the isolation and property of Rhodococcus pyridinivorans(PDB9) having BPA biodegradability. The bacterial strain was able to grow in a basal mineral salt medium containing BPA (50 mg/L) as the sole carbon source, and to degrade 90% BPA within 48 h. The effects of BPA on the biology of Rhodococcus pyridinivorans(PDB9) were elucidated using 2D proteomic. The cytoplasmic proteins isolated from these BPA –treated and -untreated cells after 24, 48hour were carried out for proteomic analysis. Four intermediated compounds were detected using Liquid Chromatography/Mass Spectrometry when BPA was degraded by Rhodococcus pyridinivorans via a novel pathway. There were five differential protein, respectively, as compared to their corresponding control (without BPA addition), at the indicated incubation times when 40% in 24h and 90% 48h of BPA had been removed. The five protein ID were identified by LTQ-FT-MS/MS. Proteins identified included NDMA-dependent methanol dehydrogenase, Elongation factor Tu, Cysteine synthase, Electron transfer flavoprotein beta/alpha subunit, ATP-dependent Clp protease proteolytic subunit. We had isolated a potential bacteria Rhodococcus pyridinivorans which could almost completely degrade 50 mg/L BPA within 48 hours. Moreover, using LC-Mass, we discovered a novel pathway to degrade BPA by microbe. Characterizing the bacterial response to BPA at the biochemical level identifies proteins that can be used by biocatalysts for biodegradation deserving further investigations.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:36:43Z (GMT). No. of bitstreams: 1
ntu-101-R98b46034-1.pdf: 5273806 bytes, checksum: e74520f8a653c22705cb6ef22879f239 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContent
Acknowledgements .........................................................................................i
Abstract (Chinese) ............................................................................................................ii
Abstract (English) ...........................................................................................................iii
Abbreviations ................................................................................................................viii
Lists of Figures ...............................................................................................................ix
Lists of Figures ...............................................................................................................x
1. Introduction ................................................................................................................1
1.1. Environment Pollution......................................................................................1
1.2. Aromatic Compounds in the Environment .......................................................1
1.3. Bisphenol A (BPA) ............................................................................................2
1.4. Biodegradation .................................................................................................4
1.5. Aerobic Bacterial Catabolic Pathways for BPA ................................13
1.6. Functional proteomics analysis .....................................................................14
2. Materials and Methods ............................................................................................15
2.1. Culture medium, culture conditions, and isolation of bacteria .....................15
2.2. Measurement of cell growth ………………………………………………….......16
2.3. Culture medium analysis by HPLC ................................................................16
2.4. Intermediates identify by LC-MS.............................................................…...17
2.5. Cell extracts preparation................................................................................17
2.6. Two-dimensional gel electrophoresis (2DE)..................................................18
2.7. Two-dimensional difference gel electrophoresis (2D-DIGE).........................19
2.8. In-gel digestion for protein identification.......................................................20
2.9. Mass spectrometry analysis ………………………….………….………….........21
3. Results ........................................................................................................................22
3.1. Classification of BPA-degrading bacteria …………………………….…........22
3.2. Effects of pH and temperature .......................................................................23
3.3 Effect of substrate concentration………………………………………………...23
3.4. Degradation activity of strain PDB9..............................................................24
3.5. Identification of different-expressed protein...................................................24
3.6. Metabolic intermediates identify by LC-mass.................................................25
4. Discussions ................................................................................................................26
4.1. Metabolic pathways proposed…………………………………………………… 26
4.2. SEM and TEM analysis of BPA degradation ..................................................27
4.3 Functional proteomics analysis in BPA degradation………………...28
4.4. Novel pathway for bacterial metabolism of BPA................................29
5. Conclusion .................................................................................................................29
6. References .................................................................................................................30
7. Figures .......................................................................................................................50
8. Tables .........................................................................................................................64
dc.language.isoen
dc.subject雙酚Azh_TW
dc.subject高壓液相層析儀zh_TW
dc.subject質譜儀zh_TW
dc.subject生物降解zh_TW
dc.subject二維電泳zh_TW
dc.subject2D proteomicen
dc.subjectLTQ-FT-MS/MSen
dc.subjectBiodegradationen
dc.subjectHPLC.en
dc.subjectBisphenol Aen
dc.title以蛋白質體學探討雙份A降解菌Rhodococcus pyridinivorans(PDB9)之蛋白調控與降解機制zh_TW
dc.titleProteomic analysis of Rhodococcus pyridinivorans (PDB9) during biodegradation mechanism of Bisphenol A (BPA)en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee阮雪芬,黃宣誠
dc.subject.keyword二維電泳,生物降解,質譜儀,雙酚A,高壓液相層析儀,zh_TW
dc.subject.keyword2D proteomic,Biodegradation,LTQ-FT-MS/MS,Bisphenol A,HPLC.,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2012-02-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved