請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66446完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光超 | |
| dc.contributor.author | Yu-Ling Lin | en |
| dc.contributor.author | 林于凌 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:36:14Z | - |
| dc.date.available | 2017-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2012-02-02 | |
| dc.identifier.citation | Allard, J.D., Chang, H.C., Herbst, R., McNeill, H., and Simon, M.A. (1996). The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf. Development 122, 1137.
Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. (2004). Protein tyrosine phosphatases in the human genome. Cell 117, 699-711. Alvarado, R.J., Rosenberg, J.M., Andreu, A., Bryan, J.C., Chen, W.Z., Ren, T., and Kavallieratos, K. (2005). Structural insights into the coordination and extraction of Pb(II) by disulfonamide ligands derived from o-phenylenediamine. Inorg Chem 44, 7951-7959. Andersen, J.N., Del Vecchio, R.L., Kannan, N., Gergel, J., Neuwald, A.F., and Tonks, N.K. (2005). Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods 35, 90-114. Angers-Loustau, A., Cote, J.F., and Tremblay, M.L. (1999). Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochemistry and cell biology= Biochimie et biologie cellulaire 77, 493. Arregui, C.O., Balsamo, J., and Lilien, J. (2000). Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochemical Research 25, 95-105. Begum, N., Hyder, M.I., Kabir, S.E., Hossain, G.M., Nordlander, E., Rokhsana, D., and Rosenberg, E. (2005). Dithiolate complexes of manganese and rhenium: X-ray structure and properties of an unusual mixed valence cluster Mn3(CO)6(mu-eta2-SCH2CH2CH2S)3. Inorg Chem 44, 9887-9894. Blanchetot, C., Tertoolen, L.G., Overvoorde, J., and den Hertog, J. (2002). Intra-and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases. Journal of Biological Chemistry 277, 47263. Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365. Bretscher, A., Edwards, K., and Fehon, R.G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nature Reviews Molecular Cell Biology 3, 586-599. Brook, W.J. (2000). Hedgehog signaling and the axial patterning of Drosophila wings. Biochem Cell Biol 78, 585-591. Buist, A., Zhang, Y.L., Keng, Y.F., Wu, L., Zhang, Z.Y., and den Hertog, J. (1999). Restoration of potent protein-tyrosine phosphatase activity into the membrane-distal domain of receptor protein-tyrosine phosphatase £. Biochemistry 38, 914-922. Chishti, A.H., Kim, A.C., Marfatia, S.M., Lutchman, M., Hanspal, M., Jindal, H., Liu, S.C., Low, P.S., Rouleau, G.A., and Mohandas, N. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in biochemical sciences 23, 281. Copeland, J.W., Copeland, S.J., and Treisman, R. (2004). Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain. J Biol Chem 279, 50250-50256. Crozatier, M., Glise, B., and Vincent, A. (2004). Patterns in evolution: veins of the Drosophila wing. Trends Genet 20, 498-505. Dickson, T.C., Mintz, C.D., Benson, D.L., and Salton, S.R. (2002). Functional binding interaction identified between the axonal CAM L1 and members of the ERM family. J Cell Biol 157, 1105-1112. Edwards, K., Davis, T., Marcey, D., Kurihara, J., and Yamamoto, D. (2001). Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene 275, 195-205. Fujiyama-Nakamura, S., Ito, S., Sawatsubashi, S., Yamauchi, Y., Suzuki, E., Tanabe, M., Kimura, S., Murata, T., Isobe, T., Takeyama, K., et al. (2009). BTB protein, dKLHL18/CG3571, serves as an adaptor subunit for a dCul3 ubiquitin ligase complex. Genes Cells 14, 965-973. Garrity, P.A., Lee, C.H., Salecker, I., Robertson, H.C., Desai, C.J., Zinn, K., and Zipursky, S.L. (1999). Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron 22, 707-717. Herbst, R., Carroll, P.M., Allard, J.D., Schilling, J., Raabe, T., and Simon, M.A. (1996). Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell 85, 899-909. Hironaka, K., Umemori, H., Tezuka, T., Mishina, M., and Yamamoto, T. (2000). The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor £_2 and £` subunits. Journal of Biological Chemistry 275, 16167. Hou, S.W., Zhi, H.Y., Pohl, N., Loesch, M., Qi, X.M., Li, R.S., Basir, Z., and Chen, G. (2010). PTPH1 dephosphorylates and cooperates with p38£^ MAPK to increase Ras oncogenesis through PDZ-mediated interaction. Cancer research 70, 2901. Kent, D., Bush, E.W., and Hooper, J.E. (2006). Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus. Development 133, 2001-2010. Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nature Reviews Neuroscience 5, 771-781. Kina, S., Tezuka, T., Kusakawa, S., Kishimoto, Y., Kakizawa, S., Hashimoto, K., Ohsugi, M., Kiyama, Y., Horai, R., and Sudo, K. (2007). Involvement of protein tyrosine phosphatase PTPMEG in motor learning and cerebellar long term depression. European Journal of Neuroscience 26, 2269-2278. Lee, H.W., Choi, J., Shin, H., Kim, K., Yang, J., Na, M., Choi, S.Y., Kang, G.B., Eom, S.H., Kim, H., et al. (2008). Preso, a novel PSD-95-interacting FERM and PDZ domain protein that regulates dendritic spine morphogenesis. J Neurosci 28, 14546-14556. Matusek, T., Djiane, A., Jankovics, F., Brunner, D., Mlodzik, M., and Mihaly, J. (2006). The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957-966. Matusek, T., Gombos, R., Szecsenyi, A., Sanchez-Soriano, N., Czibula, A., Pataki, C., Gedai, A., Prokop, A., Rasko, I., and Mihaly, J. (2008). Formin proteins of the DAAM subfamily play a role during axon growth. The Journal of Neuroscience 28, 13310. Mintz, C.D., Carcea, I., McNickle, D.G., Dickson, T.C., Ge, Y., Salton, S.R., and Benson, D.L. (2008). ERM proteins regulate growth cone responses to Sema3A. J Comp Neurol 510, 351-366. Newsome, T.P., Asling, B., and Dickson, B.J. (2000). Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851. Ostman, A., and Bohmer, F.D. (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends in cell biology 11, 258-266. Pallen, C.J. (1993). The receptor-like protein tyrosine phosphatase [alpha]: a role in cell proliferation and oncogenesis (Elsevier). Perkins, L.A., Larsen, I., and Perrimon, N. (1992). Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70, 225-236. Price, J.V., Savenye, E.D., Lum, D., and Breitkreutz, A. (1997). Dominant enhancers of Egfr in Drosophila melanogaster: genetic links between the Notch and Egfr signaling pathways. Genetics 147, 1139-1153. Prokop, A., Sanchez-Soriano, N., Goncalves-Pimentel, C., Molnar, I., Kalmar, T., and Mihaly, J. (2011). DAAM family members leading a novel path into formin research. Commun Integr Biol 4, 538-542. Rose, R., Weyand, M., Lammers, M., Ishizaki, T., Ahmadian, M.R., and Wittinghofer, A. (2005). Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435, 513-518. Samuel, S., and Sitrin, M.D. (2008). Vitamin D's role in cell proliferation and differentiation. Nutr Rev 66, S116-124. Sanchez-Soriano, N., Goncalves-Pimentel, C., Beaven, R., Haessler, U., Ofner-Ziegenfuss, L., Ballestrem, C., and Prokop, A. (2010). Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics. Dev Neurobiol 70, 58-71. Seong, K.H., Akimaru, H., Dai, P., Nomura, T., Okada, M., and Ishii, S. (2010). Inhibition of the nuclear import of cubitus interruptus by roadkill in the presence of strong hedgehog signal. PLoS One 5, e15365. Stoker, A., and Dutta, R. (1998). Protein tyrosine phosphatases and neural development. Bioessays 20, 463-472. Takahashi, K., Sasaki, T., Mammoto, A., Hotta, I., Takaishi, K., Imamura, H., Nakano, K., Kodama, A., and Takai, Y. (1998). Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene 16, 3279-3284. Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology 7, 833-846. Tonks, N.K., and Neel, B.G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Current opinion in cell biology 13, 182-195. Topffer, S., Muller-Schiffmann, A., Matentzoglu, K., Scheffner, M., and Steger, G. (2007a). Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. Journal of General Virology 88, 2956. Topffer, S., Muller-Schiffmann, A., Matentzoglu, K., Scheffner, M., and Steger, G. (2007b). Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol 88, 2956-2965. Uchida, Y., Ogata, M., Mori, Y., Oh-hora, M., Hatano, N., and Hamaoka, T. (2002). Localization of PTP-FERM in nerve processes through its FERM domain. Biochemical and biophysical research communications 292, 13-19. Wadham, C., Gamble, J.R., Vadas, M.A., and Khew-Goodall, Y. (2000). Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. Journal of Cell Science 113, 3117. Wang, Z., Shen, D., Parsons, D.W., Bardelli, A., Sager, J., Szabo, S., Ptak, J., Silliman, N., Peters, B.A., and van der Heijden, M.S. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164. Whited, J.L., Robichaux, M.B., Yang, J.C., and Garrity, P.A. (2007). Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134, 43. Zhang, Q., Shi, Q., Chen, Y., Yue, T., Li, S., Wang, B., and Jiang, J. (2009). Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc Natl Acad Sci U S A 106, 21191-21196. Zhang, Q., Zhang, L., Wang, B., Ou, C.Y., Chien, C.T., and Jiang, J. (2006). A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell 10, 719-729. Zhang, S.H., Liu, J., Kobayashi, R., and Tonks, N.K. (1999). Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. Journal of Biological Chemistry 274, 17806. Zhi, H., Hou, S., Li, R., Basir, Z., Xiang, Q., Szabo, A., and Chen, G. (2010). PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization. Oncogene. Zhuang, M., Calabrese, M.F., Liu, J., Waddell, M.B., Nourse, A., Hammel, M., Miller, D.J., Walden, H., Duda, D.M., and Seyedin, S.N. (2009). Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Molecular cell 36, 39-50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66446 | - |
| dc.description.abstract | 蛋白質酪氨酸磷酸酶 (Protein tyrosine kinases;PTKs)與蛋白質酪氨酸去磷酸酶 (protein tyrosine phosphatases;PTPs)相互調節酪氨酸磷酸化與去磷酸化作用,並且在細胞週期、細胞分化與細胞之移動中扮演重要的角色。而典型蛋白質酪氨酸去磷酸酶中又分為受器型 (receptor-like PTPs;RPTPs) 與非受器型 (non-transmembrane PTPs;NTPTPs) 兩種,雖然在果蠅研究中已確定許多受器型酪氨酸去磷酸酶在神經發育之功能,但多數的非受器型酪氨酸去磷酸酶之功能仍不清楚。在本論文中我將探討一個非受器型的酪氨酸去磷酸酶-dPTPMEG。根據先前研究結果已知dPTPMEG對果蠅腦中蕈狀體(mushroombody)之軸突伸展(axon projection)的維持有關。我主要利用酵母菌雙雜交系統 (yeast two-hybrid)之方法篩選出在果蠅胚胎基因庫(Drosophila embryonic cDNA library)中與dPTPMEG有交互作用的基因。經過進一步實驗確認後從中挑選出兩個可能與dPTPMEG交互作用之基因做後續研究。我利用GST 融合蛋白沉澱法(GST pull-down assays)與共同免疫沉澱法 (co-immunoprecitipation) 更進一步證實dPTPMEG與此兩蛋白間之交互作用,此外也利用果蠅的翅膀觀察其遺傳性狀交互作用。雖然在本篇論文中對dPTPMEG及其交互作用蛋白之關係有了初步的研究成果,這些蛋白之間的交互作用在果蠅發育上扮演的角色則需要更進一步的實驗研究。 | zh_TW |
| dc.description.abstract | Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) reciprocally regulate protein tyrosine phosphorylation, and is involved in various cellular processes, including cell cycle, proliferation, differentiation and cell movement. Classical PTPs can be classified into receptor-like PTPs (RPTPs) and non-transmembrane PTPs (NTPTPs). Although many Drosophila RPTPs have been found to act during neurogenesis, the roles of NTPTPs in development remain unclear. In this study, we focused on the dPTPMEG, one of the Drosophila classical non-transmembrane PTPs (NTPTPs), which has been reported to play a role in the maintenance of axon projection of Drosophila mushroom body. To further explore the function of dPTPMEG, the yeast two-hybrid screen was performed to isolate dPTPMEG-interacting proteins from Drosophila embryonic cDNA library. Two proteins have been identified that can potentially interact with dPTPMEG. The interaction between dPTPMEG and these two proteins was further confirmed by in vitro GST pull-down assays and in vivo co-immunoprecipitation experiments. We further investigated their genetic interactions in Drosophila developing wings. The developmental roles of these interactions will be further investigated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:36:14Z (GMT). No. of bitstreams: 1 ntu-100-R98b46018-1.pdf: 2197378 bytes, checksum: 689994c744626dcfa7503147b6bb9b25 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Abstract in Chinese……………………………………..................................................i
Abstract in English……………………………………………………………………..ii Table of contents……………………………………………………………………….iii Acknowledgement………………………………………………………………………v 1. Introduction…………………………………………………………………………1 1.1 Protein tyrosine phosphatase………………………………………………………...1 1.2 Protein tyrosine phosphatase in Drosophila………………………………………...2 1.3 dPTPMEG……………………………………………………………….…..............4 2. Materials and methods……………………………………………………………10 3. Resuts………………………………………………………………………………20 3.1 Identification of dPTPMEG binding proteins by yeast two-hybrid screen…………20 3.2 Characterization of the interaction between dPTPMEG and clone (21-23)……….23 3.3 Characterization of the interaction between dPTPMEG and clone (12-56)….........26 4. Discussion………………………………………………………………………….28 Reference………………………………………………………………………………52 Appendix…………………………………………………………………………….…61 | |
| dc.language.iso | en | |
| dc.subject | 免疫共沉澱實驗 | zh_TW |
| dc.subject | 酵母菌雙雜交系統 | zh_TW |
| dc.subject | 蛋白質酪氨酸去磷酸酶 | zh_TW |
| dc.subject | 酪氨酸去磷酸酶 | zh_TW |
| dc.subject | MEG | zh_TW |
| dc.subject | GST融合蛋白沉澱實驗 | zh_TW |
| dc.subject | Yeast two-hybrid screen | en |
| dc.subject | tyrosine phosphatase | en |
| dc.subject | dPTPMEG | en |
| dc.subject | GST-pull down assay | en |
| dc.subject | co-Immunoprecipitation | en |
| dc.title | 蛋白質酪氨酸去磷酸酶MEG交互作用蛋白之分子分析 | zh_TW |
| dc.title | Identification and molecular characterization of dPTPMEG-interacting proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 冀宏源,朱善德 | |
| dc.subject.keyword | 酵母菌雙雜交系統,蛋白質酪氨酸去磷酸酶,酪氨酸去磷酸酶,MEG,GST融合蛋白沉澱實驗,免疫共沉澱實驗, | zh_TW |
| dc.subject.keyword | Yeast two-hybrid screen,tyrosine phosphatase,dPTPMEG,GST-pull down assay,co-Immunoprecipitation, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-03 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
