Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林發暄
dc.contributor.authorTsung-Min Huangen
dc.contributor.author黃琮閔zh_TW
dc.date.accessioned2021-05-17T09:15:39Z-
dc.date.available2012-08-15
dc.date.available2021-05-17T09:15:39Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citationBelliveau, J., Kennedy, D., McKinstry, R., Buchbinder, B., Weisskoff, R., Cohen, M., Vevea, J., Brady, T., Rosen, B., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716-719.
Blaimer, M., Breuer, F., Mueller, M., Heidemann, R.M., Griswold, M.A., Jakob, P.M., 2004. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15, 223-236.
Brainard, D.H., 1997. The Psychophysics Toolbox. Spat Vis 10, 433-436.
Buehrer, M., Pruessmann, K.P., Boesiger, P., Kozerke, S., 2007. Array compression for MRI with large coil arrays. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 57, 1131-1139.
Bydder, M., Jung, Y., 2009. A nonlinear regularization strategy for GRAPPA calibration. Magnetic resonance imaging 27, 137-141.
Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179-194.
de Zwart, J.A., van Gelderen, P., Kellman, P., Duyn, J.H., 2002. Reduction of gradient acoustic noise in MRI using SENSE-EPI. Neuroimage 16, 1151-1155.
Ding, Y., Xue, H., Chang, T.-c., Guetter, C., Simonetti, O., 2012. Self-consistent GRAPPA Reconstruction with Close-form Solution. Proceedings 20th Scientific Meeting, International Society for Magnetic Resonance in Medicine
Australia.
Doneva, M., Bornert, P., 2008. Automatic coil selection for channel reduction in SENSE-based parallel imaging. MAGMA 21, 187-196.
Farzaneh, F., Riederer, S.J., Pelc, N.J., 1990. Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14, 123-139.
Fischl, B., Liu, A., Dale, A.M., 2001. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20, 70-80.
Fischl, B., Sereno, M.I., Dale, A.M., 1999. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195-207.
Golay, X., de Zwart, J.A., Ho, Y.C., Sitoh, Y.Y., 2004. Parallel imaging techniques in functional MRI. Top Magn Reson Imaging 15, 255-265.
Griswold, M.A., Jakob, P.M., Chen, Q., Goldfarb, J.W., Manning, W.J., Edelman, R.R., Sodickson, D.K., 1999. Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41, 1236-1245.
Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A., 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47, 1202-1210.
Hennig, J., Zhong, K., Speck, O., 2007. MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance. Neuroimage 34, 212-219.
Hugger, T., Zahneisen, B., LeVan, P., Lee, K.J., Lee, H.L., Zaitsev, M., Hennig, J., 2011. Fast undersampled functional magnetic resonance imaging using nonlinear regularized parallel image reconstruction. PLoS One 6, e28822.
Jakob, P.M., Griswold, M.A., Edelman, R.R., Sodickson, D.K., 1998. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA 7, 42-54.
King, S.B., Varosi, S.M., Duensing, G.R., 2010. Optimum SNR data compression in hardware using an Eigencoil array. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 63, 1346-1356.
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., et al., 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89, 5675-5679.
Lin, F.H., Wald, L.L., Ahlfors, S.P., Hamalainen, M.S., Kwong, K.K., Belliveau, J.W., 2006. Dynamic magnetic resonance inverse imaging of human brain function. Magn Reson Med 56, 787-802.
Lin, F.H., Witzel, T., Chang, W.T., Wen-Kai Tsai, K., Wang, Y.H., Kuo, W.J., Belliveau, J.W., 2010. K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems. Neuroimage 49, 3086-3098.
Lin, F.H., Witzel, T., Mandeville, J.B., Polimeni, J.R., Zeffiro, T.A., Greve, D.N., Wiggins, G., Wald, L.L., Belliveau, J.W., 2008a. Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing. Neuroimage 42, 230-247.
Lin, F.H., Witzel, T., Zeffiro, T.A., Belliveau, J.W., 2008b. Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging. Neuroimage 43, 297-311.
Lustig, M., Alley, M., Vasanawala, S., Donoho, D., Pauly, J., 2009. L1 SPIR-iT: Autocalibrating Parallel Imaging Compressed Sensing. Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p. 379.
Lustig, M., Pauly, J.M., 2010. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64, 457-471.
Mansfield, P., 1977. Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics 10, L55.
McGibney, G., Smith, M.R., Nichols, S.T., Crawley, A., 1993. Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 30, 51-59.
Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M., 2012. Fast l(1) -SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime. Ieee Transactions on Medical Imaging 31, 1250-1262.
Noll, D.C., Nishimura, D.G., Macovski, A., 1991. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 10, 154-163.
Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W., 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87, 9868-9872.
Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10, 437-442.
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42, 952-962.
Qu, P., Wang, C., Shen, G.X., 2006. Discrepancy-based adaptive regularization for GRAPPA reconstruction. J Magn Reson Imaging 24, 248-255.
Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., Mueller, O.M., 1990. The NMR phased array. Magn Reson Med 16, 192-225.
Shewchuk, J.R., 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Carnegie Mellon University.
Sodickson, D.K., Manning, W.J., 1997. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38, 591-603.
Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M., 2012. Coil compression for accelerated imaging with Cartesian sampling. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6642-
dc.description.abstract核磁共振逆影像(magnetic resonance inverse imaging, InI) 利用多組核磁共振射頻線圈同步接收核磁共振影像(magnetic resonance imaging, MRI) 信號以含括全腦的視區及100毫秒的時間解析度 。其基本原理是利用不同位置射頻線圈提供的空間敏感度重建在資料擷取中所忽略的空間編碼訊息。先前研究發現逆影像在K空間(k-space, K-InI)比起在影像空間(image space)使用最小範數估計解(minimum-norm estimate, MNE)的重建可有更高的空間解析度和對大腦活動訊號更高的靈敏度。最近的研究顯示使用多通道接受器的平行核磁共振影像在K空間中有一訊號的自我一致性(self-consistent property)。當運用這個特性在平行影像的重建時,可以提升重建影像的品質。根據這一特性,本研究提出運用自我一致性在核磁共振逆影像 的影像重建方法。其稱為自我一致性K空間逆影像(self-consistent K-InI)以及 範數自我一致性K空間逆影像( -self-consistent K-InI)。經由模擬,我們發現與K-InI 相比,self-consistent K-InI 和 -self-consistent K-InI可以提供更高的空間解析度。應用self-consistent K-InI 及 -self-consistent K-InI於真人視覺功能性核磁共振影像實驗時,這些影像重建方法可在100毫秒時間解析度下描繪出大腦視覺區域的血液動力學變化。Self-consistent K-InI與K-InI在偵測大腦活動訊號的BOLD對比靈敏度相近,但是 -self-consistent 則比K-InI提高約50%的偵測靈敏度。我們預期self-consistent K-InI 和 -self-consistent K-InI可以提供高時間和高空間解析度的大腦活動訊號來進一步了解人腦功能。zh_TW
dc.description.abstractMagnetic resonance inverse imaging (InI) using multiple channel radio-frequency (RF) coil detection can achieve 100 ms temporal resolution with the whole brain coverage. InI reconstructions use the RF coil sensitivity information to reconstruct the omitted partition encoding data. Previously we proposed the k-space InI (K-InI) reconstruction to provide higher spatial resolution and higher sensitivity in detecting activated brain areas in BOLD fMRI experiment than the image domain minimum-norm estimate (MNE) InI reconstruction. Recently, the self-consistent property has been suggested as a useful property in k-space parallel MRI reconstruction because it improves the reconstruction image quality. Studying this study, we develop self-consistent K-InI and -self-consistent K-InI algorithms to use the self-consistent property to reconstruct highly accelerated InI acquisitions. Numerical simulations show that self-consistent K-InI and -self-consistent K-InI can provide higher spatial resolution than K-InI. Applying self-consistent K-InI and -self-consistent K-InI to BOLD contrast fMRI experiments, we found that all methods can reveal visual cortex activation at the 100 ms temporal resolution. Self-consistent K-InI has a comparable detection sensitivity to K-InI. -self-consistent K-InI the sensitivity of detecting brain activation is 50% higher than that of K-InI. Self-consistent K-InI and -self-consistent K-InI can be useful tools in fMRI data analysis to characterize brain activity with a high spatiotemporal resolution.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:39Z (GMT). No. of bitstreams: 1
ntu-101-R98548012-1.pdf: 4155433 bytes, checksum: ddc53afddb3eba6f80d8114cfd2ddf6b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES v
Chapter 1 Introduction 1
Chapter 2 Material and Method 5
2.1 Participants and tasks 5
2.2 Image acquisition 5
2.3 Data analysis 7
2.4 Image reconstruction 8
2.4.1 K-InI reconstruction 8
2.4.2 Self-consistent K-InI 12
2.4.3 -self-consistent K-InI reconstruction theory 16
2.5 Performance measures 17
2.5.1 Reconstruction error analysis 17
2.5.2 Spatial resolution analysis 17
Chapter 3 Result 20
3.1 Image reconstruction analysis 20
3.2 Spatial resolution analysis 25
3.3 In vivo experiments 35
Chapter 4 Discussion 38
REFERENCE 41
dc.language.isoen
dc.title使用疊代式自我一致性運算於核磁共振逆影像重建zh_TW
dc.titleIterative self-consistent magnetic resonance inverse imagingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文超,王福年,蔡尚岳(syytsai@gmail.com),林益如
dc.subject.keyword功能磁振造影,逆影像,視覺,磁振造影,K空間逆影像,自我一致性,zh_TW
dc.subject.keywordfMRI,InI,visual,MRI,K-InI,self-consistency,en
dc.relation.page43
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf4.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved