請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66418完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-hsiu Grace Chao) | |
| dc.contributor.author | Yu-Chen Cheng | en |
| dc.contributor.author | 鄭祐甄 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:34:49Z | - |
| dc.date.available | 2015-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-07 | |
| dc.identifier.citation | References
1. Murray, M.M., Current status and potential of primary ACL repair. Clin Sports Med, 2009. 28(1): p. 51-61. 2. Nagineni, C.N., et al., Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res, 1992. 10(4): p. 465-75. 3. Duthon, V.B., et al., Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc, 2006. 14(3): p. 204-13. 4. Chao, P.H., et al., Effects of applied DC electric field on ligament fibroblast migration and wound healing. Connect Tissue Res, 2007. 48(4): p. 188-97. 5. Hadjipanayi, E., V. Mudera, and R.A. Brown, Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil Cytoskeleton, 2009. 66(3): p. 121-8. 6. Leong, W.S., et al., Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochem Biophys Res Commun, 2010. 401(2): p. 287-92. 7. Seo, C.H., et al., The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials, 2011. 32(36): p. 9568-75. 8. Ghosh, K., et al., Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials, 2007. 28(4): p. 671-9. 9. Itoh, R.E., et al., Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol, 2002. 22(18): p. 6582-91. 10. Srinivasan, S., et al., Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol, 2003. 160(3): p. 375-85. 11. Rodriguez, O.C., et al., Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol, 2003. 5(7): p. 599-609. 12. Small, J.V. and I. Kaverina, Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol, 2003. 15(1): p. 40-7. 13. Worthylake, R.A. and K. Burridge, RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem, 2003. 278(15): p. 13578-84. 14. Candia, O.A., Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res, 2004. 78(3): p. 527-35. 15. Carninci, P., et al., The transcriptional landscape of the mammalian genome. Science, 2005. 309(5740): p. 1559-63. 16. Robinson, K.R., The responses of cells to electrical fields: a review. J Cell Biol, 1985. 101(6): p. 2023-7. 17. Nuccitelli, R. and C.A. Erickson, Embryonic-Cell Motility Can Be Guided by Physiological Electric-Fields. Experimental Cell Research, 1983. 147(1): p. 195-201. 18. Zhao, M., J.V. Forrester, and C.D. McCaig, A small, physiological electric field orients cell division. Proc Natl Acad Sci U S A, 1999. 96(9): p. 4942-6. 19. Bai, H., et al., DC electric fields induce distinct preangiogenic responses in microvascular and macrovascular cells. Arterioscler Thromb Vasc Biol, 2004. 24(7): p. 1234-9. 20. Zhao, M., et al., Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci, 2004. 117(Pt 3): p. 397-405. 21. Rajnicek, A.M., L.E. Foubister, and C.D. McCaig, Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Dev Biol, 2007. 312(1): p. 448-60. 22. Zhao, M., et al., Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006. 442(7101): p. 457-460. 23. Fang, K.S., et al., Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci, 1999. 112 ( Pt 12): p. 1967-78. 24. Zhao, M., et al., Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. Faseb Journal, 2002. 16(6): p. 857-+. 25. Zhao, M., et al., Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006. 442(7101): p. 457-60. 26. Li, Z., et al., Regulation of PTEN by Rho small GTPases. Nat Cell Biol, 2005. 7(4): p. 399-404. 27. Curtis, A.S. and C.D. Wilkinson, Reactions of cells to topography. J Biomater Sci Polym Ed, 1998. 9(12): p. 1313-29. 28. Brunette, D.M. and B. Chehroudi, The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng, 1999. 121(1): p. 49-57. 29. Lanfer, B., et al., Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials, 2008. 29(28): p. 3888-3895. 30. Dickinson, R.B., S. Guido, and R.T. Tranquillo, Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng, 1994. 22(4): p. 342-56. 31. Matthews, J.A., et al., Electrospinning of collagen nanofibers. Biomacromolecules, 2002. 3(2): p. 232-8. 32. Dunn, G.A. and T. Ebendal, Contact guidance on oriented collagen gels. Experimental Cell Research, 1978. 111(2): p. 475-9. 33. Guido, S. and R.T. Tranquillo, A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J Cell Sci, 1993. 105 ( Pt 2): p. 317-31. 34. Frey, M.T., et al., Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J, 2006. 90(10): p. 3774-82. 35. Wang, H.B., et al., Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11295-300. 36. Pelham, R.J., Jr. and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13661-5. 37. Wang, H.B., M. Dembo, and Y.L. Wang, Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol, 2000. 279(5): p. C1345-50. 38. Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 2000. 79(1): p. 144-152. 39. Park, J., et al., Quantitative Analysis of the Combined Effect of Substrate Rigidity and Topographic Guidance on Cell Morphology. IEEE Trans Nanobioscience, 2011. 40. Paszek, M.J., et al., Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005. 8(3): p. 241-54. 41. Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophys J, 2000. 79(1): p. 144-52. 42. Wozniak, M.A., et al., ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol, 2003. 163(3): p. 583-95. 43. N. Saeidi, E. A.Sander, and J. W.Ruberti, Dynamic shear-influenced collagen self-assembly. Biomaterials, 2009. 30(34): p. 6581-6592. 44. Gorin, S., D.D. Paul, and E.J. Wilkinson, An anterior cruciate ligament and medial collateral ligament tear in a skeletally immature patient: a new technique to augment primary repair of the medial collateral ligament and an allograft reconstruction of the anterior cruciate ligament. Arthroscopy, 2003. 19(10): p. E21-6. 45. Sung, K.E., et al., Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials, 2009. 30(27): p. 4833-41. 46. Wu, M.H., et al., Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomed Microdevices, 2006. 8(4): p. 331-40. 47. Tan, W. and T.A. Desai, Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials, 2004. 25(7-8): p. 1355-64. 48. Sander, E.A. and V.H. Barocas, Comparison of 2D fiber network orientation measurement methods. J Biomed Mater Res A, 2009. 88(2): p. 322-31. 49. Georges, P.C., et al., Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysical Journal, 2006. 90(8): p. 3012-3018. 50. Riveline, D., et al., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol, 2001. 153(6): p. 1175-86. 51. Oliver, T., J. Lee, and K. Jacobson, Forces exerted by locomoting cells. Semin Cell Biol, 1994. 5(3): p. 139-47. 52. DiMilla, P.A., et al., Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol, 1993. 122(3): p. 729-37. 53. Calzado-Martin, A., et al., On the role of RhoA/ROCK signaling in contact guidance of bone-forming cells on anisotropic Ti6Al4V surfaces. Acta Biomater, 2011. 7(4): p. 1890-901. 54. Rajnicek, A.M., L.E. Foubister, and C.D. McCaig, Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Biomaterials, 2008. 29(13): p. 2082-95. 55. Solon, J., et al., Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J, 2007. 93(12): p. 4453-61. 56. Yeung, T., et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton, 2005. 60(1): p. 24-34. 57. Chao, P.H., et al., Chondrocyte translocation response to direct current electric fields. J Biomech Eng, 2000. 122(3): p. 261-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66418 | - |
| dc.description.abstract | 本論文旨在研究電刺激在不同排列和厚度的膠原蛋白纖維裡對於韌帶細胞移動的影響。在生物體內,細胞原來就生長在有不同軟硬度的環境,而我們所研究的前十字韌帶細胞原生在具有高度排列的膠原蛋白纖維裡,因此本研究有有排列�無排列及不同厚薄的膠原蛋白基質。我們用不同厚薄的膠原蛋白基質是因為根據文獻顯示,對細胞而言,不同厚薄的膠原蛋白基質會有類似不同軟硬度基質的效果。我們的實驗發現細胞在這些不同排列和厚薄的膠原蛋白上會有不一樣的形態,而膠原蛋白纖維的排列會影響細胞移動的方向:在無排列的膠原蛋白裡的細胞無特別的移動方向;然而在有排列的膠原蛋白裡的細胞會沿著纖維方向移動。
當施加電場於無排列的膠原蛋白纖維時,不管在薄的還是厚的膠原蛋白基質裡的細胞都會往電場負極移動。而當施加的電場方向平行於有排列的纖維時,不管在薄的還是厚的膠原蛋白裡細胞都會沿著纖維方向移動,但不會特別往電場負極或正極移動,這代表纖維走向比電場更有影響力。當細胞的RhoA訊號被抑制住時,在薄的膠原蛋白裡的細胞會往電場負極方向移動,然而在厚的膠原蛋白裡的細胞只會沿著纖維方向移動並不會特別往負極移動。 我們的研究顯示,細胞在薄的膠原蛋白裡是運用RhoA來感受膠原蛋白纖維走向,但在厚的膠原蛋白裡則不是。 這也說明了細胞在不同厚薄的膠原蛋白裡是經由不同的訊號傳遞來感受膠原蛋白纖維走向。 | zh_TW |
| dc.description.abstract | This work investigates the effects of electric field (EF), collagen gel thickness and collagen fiber alignment on ligament fibroblast migration. ACL cells live in highly aligned collagen fibers in vivo and studies had shown that cell can feel different substrate stiffness, and different thickness collagen gel have different effective modulus. Therefore, we develop a system that can produce highly aligned collagen fiber and control the thickness of collagen gel. We had two kinds of collagen fiber orientation, random and aligned and two kinds of collagen gel thickness. Cells have different morphology when they were seeded on different collagen fiber orientation and collagen gel thickness. When EF was applied, contact guidance is more potent than EF both in thin and thick collagen groups. When RhoA signaling was modulated, EF became more dominant than contact guidance in the thin collagen groups, whereas contact guidance was still more potent in the thick collagen groups. Our data suggested that, contact guidance mediates cell RhoA activating in the thin collagen groups but not in the thick groups. This also implicates that cell use different signaling pathways to have contact guidance when they were on different collagen gel thickness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:34:49Z (GMT). No. of bitstreams: 1 ntu-101-R98548022-1.pdf: 13712978 bytes, checksum: b2809cf78ed62b9be4b31bb6c1697755 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Table of Contents
誌謝 i 摘要 ii Abstract iv Table of Contents v List of Figures vii Chapter 1 Introduction 1 1.1 Cell migration 2 1.2 Electrical field and cell migration 3 1.3 Topography, collagen fiber orientation and cell migration 4 1.4 Substrate stiffness and cell migration 5 Chapter 2 Materials and Methods 7 2.1 Cell culture 7 2.2 Microchannel fabrication 7 2.3 Collagen preparation 8 2.4 Electric field studies 10 2.5 Pharmacological treatment 10 2.6 Cell morphology and migration analysis 10 2.7 Immunofluorescence microscopy 11 2.8 Statistical analysis 11 Chapter 3 Results 12 Chapter 4 Discussions 15 References 36 | |
| dc.language.iso | en | |
| dc.subject | RhoA | zh_TW |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 電場 | zh_TW |
| dc.subject | 膠原蛋白纖維走向 | zh_TW |
| dc.subject | 膠原蛋白厚度 | zh_TW |
| dc.subject | RhoA | en |
| dc.subject | cell migration | en |
| dc.subject | electrical field | en |
| dc.subject | collagen fiber orientation | en |
| dc.subject | collagen gel thickness | en |
| dc.title | 電場及膠原蛋白基質的厚薄與排列對韌帶細胞移動的影響 | zh_TW |
| dc.title | Effects of Applied EF, Collagen Gel Thickness and Fiber Alignment on Ligament Fibroblast Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林文澧,楊台鴻 | |
| dc.subject.keyword | 細胞移動,電場,膠原蛋白纖維走向,膠原蛋白厚度,RhoA, | zh_TW |
| dc.subject.keyword | cell migration,electrical field,collagen fiber orientation,collagen gel thickness,RhoA, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 13.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
