Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66417
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorYu-Chi Chenen
dc.contributor.author陳昱吉zh_TW
dc.date.accessioned2021-06-17T00:34:47Z-
dc.date.available2014-02-01
dc.date.copyright2012-02-21
dc.date.issued2012
dc.date.submitted2012-02-07
dc.identifier.citation[1] H. Kawai, 'The piezoelectricity of poly (vinylidene fluoride),' Japanese Journal of Applied Physics, vol. 8, pp. 975-976, May 16 1969.
[2] M. Tamura, T. Yamaguchi, T. Oyaba, and T. Yoshimi, 'Electroacoustic transducers with piezoelectric high polymer films,' Journal of the Audio Engineering Society, vol. 23, pp. 21-26, February 1975.
[3] J. Ohga, 'A flat piezoelectric polymer film loudspeaker as a multi-resonance system,' Journal Acoustical Society of Japan, vol. 4, pp. 113-120, 1983.
[4] T. Sugimoto, K. Ono, A. Ando, K. Kurozumi, A. Hara, Y. Morita, and A. Miura, 'Loudspeakers for flexible displays,' Acoustical Science and Technology, vol. 30, pp. 151-153, 2009.
[5] http://fils.co.kr/.
[6] T. Sugimoto, K. Ono, A. Ando, K. Kurozumi, A. Hara, Y. Morita, and A. Miura, 'PVDF-driven flexible and transparent loudspeaker,' Applied Acoustics, vol. 70, pp. 1021-1028, 2009.
[7] J. M. Villadangos, J. Urena, M. Mazo, A. Hernandez, C. De Marziani, A. Jimenez, and F. Alvarez, 'Improvement of Cover Area in Ultrasonic Local Positioning System Using Cylindrical PVDF Transducer,' in Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on, pp. 1473-1477, 2007.
[8] J. G. Rocha, L. M. Goncalves, P. F. Rocha, M. P. Silva, and S. Lanceros-Mendez, 'Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 813-819, 2010.
[9] L. Xiao, Z. Chen, C. Feng, L. Liu, Z. Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, 'Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers,' Nano Letters, vol. 8, pp. 4539-4545, 2008.
[10] Katsunori Suzuki, Shingo Sakakibara, Morihiro Okada, Yoichiro Neo, Hidenori Mimura, Yoku Inoue, and T. Murata, 'Study of Carbon-Nanotube Web Thermoacoustic Loud Speakers,' Japanese Journal of Applied Physics, vol. 50, 2011.
[11] A. P. Medley, D. R. Billson, D. A. Hutchins, and L. A. J. Davis, 'Properties of an electrostatic transducer,' Journal of the Acoustical Society of America, vol. 120, pp. 2658-2667, Nov 2006.
[12] R. Heydt, R. Pelrine, J. Joseph, J. Eckerle, and R. Kornbluh, 'Acoustical performance of an electrostrictive polymer film loudspeaker,' The Journal of the Acoustical Society of America, vol. 107, pp. 833-839, 2000.
[13] M. Antila, H. Nykanen, and K. Saarinen, 'Multichannel Electromechanical Film Panel Loudspeaker,' AES 16th INTERNATIONAL CONFERENCE, pp. 183-190, 1999.
[14] M. Paajanen, J. Lekkala, and H. Valimaki, 'Electromechanical modeling and properties of the electret film EMFI,' Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 8, pp. 629-636, 2001.
[15] M. Wegener, W. Wirges, and B. Tiersch, 'Porous polytetrafluoroethylene (PTFE) electret films: porosity and time dependent charging behavior of the free surface,' Journal of Porous Materials, vol. 14, pp. 111-118, 2007.
[16] D. Rychkov, A.Kuznetsov, and A. Rychkov, 'Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, pp. 8-14, 2011.
[17] W. C. Ko, C. K. Tseng, W. J. Wu, and C. K. Lee, 'Charge storage and mechanical properties of porous PTFE and composite PTFE/COC electret,' e-polymers, 2010.
[18] L. S. McCarty and G. M. Whitesides, 'Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets,' Angewandte Chemie-International Edition, vol. 47, pp. 2188-2207, 2008.
[19] Z. F. Xia, A. Wedel, and R. Danz, 'Charge storage and its dynamics in porous polytetrafluoroethylene (PTFE) film electrets,' Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 10, pp. 102-108, 2003.
[20] Z. Xia, R. Gerhard-Multhaupt, W. Künstler, A. Wedel, and R. Danz, 'High surface-charge stability of porous polytetrafluoroethylene electret films at room and elevated temperatures,' Journal of Physics D: Applied Physics, vol. 32, pp. L83, 1999.
[21] L. L. Cui, M. H. Song, Y. X. Kong, L. Cheng, D. Wang, Y. H. Xiao, and J. Jiang, 'The comparative studies of charge storage stabilities among three PP/porous PTFE/PP electret,' Journal of Electrostatics, vol. 67, pp. 412-416, 2009.
[22] M. Wegener, W. Wirges, W. Kunstler, R. Gerhard-Multhaupt, B. Elling, M. Pinnow, and R. Danz, 'Coating of porous polytetrafluoroethylene films with other polymers for electret applications,' in Electrical Insulation and Dielectric Phenomena, 2001 Annual Report. Conference on, pp. 100-103, 2001.
[23] J. A. Giacometti, 'Corona charging of polymers,' IEEE Transactions on Electrical Insulation, vol. 27, 1992.
[24] K. Adamiak, and P. Atten, 'Simulation of corona discharge in point-plane configuration,' in Proceedings of the ESA–IEEE Joint Meeting on Electrostatics, pp. 104–118, 2003.
[25] Y. M. Zhu, and X. P. Kong, 'Current-voltage characteristics of multi-pins-to-plate corona discharge,' High Voltage Engineering, vol. 32, 2006.
[26] J. H. Chen, 'Electron density and energy distributions in the positive dc corona: interpretation for corona-enhanced chemical reactions,' in Plasma Chemistry and Plasma Processing, 2002.
[27] D. H. Zhu, Ed., High- voltage technique and insulation. Tsinghua University publishing house, 1996.
[28] C. Ye, M. Wu, S. Wu, C. Huang, and J. Yang, 'Modeling of Parametric Loudspeakers by Gaussian-Beam Expansion Technique,' Japanese Journal of Applied Physics, vol. 49, 2010.
[29] S. Hayashi, T. Tanno, T. Kamekawa, K. Ashihara, and S. Kiryu, 'Design and Implementation of a Sound Field Effector Using a Loudspeaker Array,' presented at the AES 125th Convention, San Francisco, CA, USA, 2008.
[30] K. Watanabe, A. Yasuda, H. Ohtani, R. Suzuki, N. Shinkawa, T. Tsuchiya, and K. Tsuihiji, 'A novel beam-forming loudspeaker system using digitally driven speaker system,' presented at the AES 127th Convention, New York, NY, USA, 2009.
[31] P. J. Westervelt, 'Parametric Acoustic Array,' Journal of the Acoustical Society of America, vol. 35, pp. 535-537, April 1963.
[32] H. O. Berktay, 'Possible Exploitation of Non-linear Acoustics in Underwater Transmitting Applications,' Journal of Sound and Vibration, vol. 2, pp. 435-461, 1965.
[33] M. Yoneyama, and J. I. Fujimoto, 'The Audio Spotlight: An application of nonlinear interaction of sound waves to a new type of loundspeaker design,' Journal of the Acoustical Society of America, vol. 73, pp. 1532-1536, May 1983.
[34] http://www.holosonics.com.
[35] R. E. Shively and W. N. House, 'Perceived Boundary Effects in an Automotive Vehicle Interior,' in 100th AES Conv., Copenhagen, AES Preprint 4245, pp. O-6, 1996.
[36] R. E. Shively, 'Automotive audio design (A tutorial),' in 109th AES Conv., Los Angeles, CA, 2000, AES Preprint 5276, pp. 1-19.
[37] G. Marien, 'Vehicle audio systems: loudspeaker design and development,' in Vehicle Audio Systems, IEE Colloquium on, pp. 1/1-1/2, 1991.
[38] H. Kuttruff, 'Sound Fields in Small Rooms,' presented at the 15th AES International Conference, Copenhagen, Denmark, 1998.
[39] M. Strauss, J. Nowak, and D. d. Vries, 'Approach to Sound Field Analysis and Simulation Inside a Car Cabin,' presented at the 36th AES International Conference, Dearborn, Michigan, USA, 2009.
[40] G. Yimin, and M. Ehsani, 'Design and Control Methodology of Plug-in Hybrid Electric Vehicles,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 633-640, 2010.
[41] A. Emadi, L. Young Joo, and K. Rajashekara, 'Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles,' Industrial Electronics, IEEE Transactions on, vol. 55, pp. 2237-2245, 2008.
[42] Z. Amjadi, and S. S. Williamson, 'Power-Electronics-Based Solutions for Plug-in Hybrid Electric Vehicle Energy Storage and Management Systems,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 608-616, 2010.
[43] F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui, and M. El Hachemi Benbouzid, 'Hybrid Cascaded H-Bridge Multilevel-Inverter Induction-Motor-Drive Direct Torque Control for Automotive Applications,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 892-899, 2010.
[44] E. Manla, A. Nasiri, C. H. Rentel, and M. Hughes, 'Modeling of Zinc Bromide Energy Storage for Vehicular Applications,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 624-632, 2010.
[45] Z. Amjadi, and S. S. Williamson, 'A Novel Control Technique for a Switched-Capacitor-Converter-Based Hybrid Electric Vehicle Energy Storage System,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 926-934, 2010.
[46] D. M. Siringoringo, and Y. Fujino, 'Experimental study of laser Doppler vibrometer and ambient vibration for vibration-based damage detection,' Engineering Structures, vol. 28, pp. 1803-1815, 2006.
[47] B. S. Anthony, M. Milena, and J. E. David, 'Measuring strain response mode shapes with a continuous-scan LDV,' Shock and Vibration, vol. 9, pp. 19-27, 2002.
[48] C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, 'A High Performance Doppler Interferometer for Advanced Optical Storage System,' Japanese Journal of Applied Physics, vol. 38, pp. 1730-1741, 1999.
[49] J. N. Butters, and J. A. Leendertz, 'Speckle pattern and holographic techniques in engineering metrology,' Optics & Laser Technology, vol. 3, pp. 26-30, 1971.
[50] T. J. Cookson, J. N. Butters, and H. C. Pollard, 'Pulsed lasers in electronic speckle pattern interferometry,' Optics & Laser Technology, vol. 10, pp. 119-124, 1978.
[51] O. T. Thomson, W. Rits, D. C. G. Eaton, O. Dupont, and P. Queekers, 'Ply drop-off effects in CFRP/honeycomb sandwich panels—experimental results,' Composites Science and Technology, vol. 56, pp. 423-437, 1996.
[52] G. Montay, O. Sicot, A. Maras, E. Rouhaud, and M. François, 'Two Dimensions Residual Stresses Analysis Through Incremental Groove Machining Combined with Electronic Speckle Pattern Interferometry,' Experimental Mechanics, vol. 49, pp. 459-469, 2009.
[53] W. C. Wang, C. H. Hwang, and S. Y. Lin, 'Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,' Appl. Opt., vol. 35, pp. 4502-4509, 1996.
[54] Y. Y. Cheng, and J. C. Wyant, 'Phase shifter calibration in phase-shifting interferometry,' Appl. Opt., vol. 24, pp. 3049-3052, 1985.
[55] P. Hariharan, B. F. Oreb, and T. Eiju, 'Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,' Appl. Opt., vol. 26, pp. 2504-2506, 1987.
[56] C. C. Kao, G. B. Yeh, S. S. Lee, C. K. Lee, C. S. Yang, and K. C. Wu, 'Phase-shifting Algorithms for Electronic Speckle Pattern Interferometry,' Applied Optics, vol. 41, pp. 46-54, 2002.
[57] A. Felske, and A. Happe, 'Vibration analysis by double pulsed laser holography,' presented at the International Automotive Engineering Congress and Exposition, 1977.
[58] A. Felske, G. Hoppe, and H. Matthäi, 'Oscillations in squealing disk brakes analysis of vibrating modes by holographic interferometry,' SAE 780333, 1978.
[59] R. Aprahamian, D. Evensen, J. Mixson, and J. Jacoby, 'Holographic study of propagating transverse waves in plates,' Experimental Mechanics, vol. 11, pp. 357-362, 1971.
[60] F. Chen, W. D. Luo, M. Dale, A. Petniunas, P. Harwood, and G. M. Brown, 'High-speed ESPI and related techniques: overview and its application in the automotive industry,' Optics and Lasers in Engineering, vol. 40, pp. 459-485, 2003.
[61] M. R. Bai, C. J. Wang, D. M. Chiang, and S. R. Lin, 'Experimental modeling and design optimization of push-pull electret loudspeakers,' Acoustical Society of America, vol. 127, pp. 2274-2281, April 2010.
[62] Y. C. Chen, C. J. Chien, W. C. Chang, W. C. Ko, C. H. Liou, W. J. Wu, P. Z. Chang, and C. K. Lee, 'Design and Experimental Verification of Cell Actuators in a Flexible Electret-based Loudspeaker System,' presented at the 21st International Conference on Adaptive Structures and Technologies (ICAST), University Park, Pennsylvania, U.S.A, 2010.
[63] D. M. Chiang, and J. L. Chen, 'A Novel Flexible Loudspeaker Driven by an Electret Diaphragm,' presented at the AES 121st Convention, 2006.
[64] Z. Hu, and H. V. Seggern, 'Air-breakdown charging mechanism of fibrous polytetrafluoroethylene films,' Journal of Applied Physics, vol. 98, 2005.
[65] T. Yokoyama, T. Asami, K. Mori, and A. Hasegawa, 'Radiation Characteristics of Hexagonal Transducer Array,' Japanese Journal of Applied Physics, vol. 44, pp. 4702-4707, 2005.
[66] G. M. Sessler, Electrets. Berlin: Springer-Verlag, 1987.
[67] T. Mellow, and L. Kärkkäinen, 'On the forces in single-ended and push-pull electret transducers,' Acoustical Society of America, vol. 124, pp. 1497–1504, September 2008.
[68] M. R. Bai, R. L. Chen, and C. J. Wang, 'Electroacoustic analysis of an electret loudspeaker using combined finite-element and lumped-parameter models,' The Journal of the Acoustical Society of America, vol. 125, pp. 3632-3640, June 2009.
[69] J. Borwick, Loudspeaker and Headphone Handbook.
[70] J. W. Caruthers, Ed., Fundamentals of Marine Acoustics (Elsevier Oceanography Series. Netherlands: Elsevier scientific publishing company, 1977.
[71] T. S. Hert, and M. F. Hamilton, 'Nonlinear effects in focused sound beams,' Journal of the Acoustical Society of America, vol. 84, pp. 1488-1496 1998.
[72] M. F. Hamilton, and D. T. Blackstock, Frontiers of nonlinear acoustics. London: Elsevier Science Publishers Ltd, 1990.
[73] M. A. Averkiou, Y. S. Lee, and M. F. Hamilton, 'Self-demodulation of amplitude and frequency modulated pulses in a thermoviscous fluid,' Journal of the Acoustical Society of America, vol. 94, pp. 2876-2883, November 1993.
[74] G. Y. Wu, 'Design and Construction of An Innovative Laser Doppler Vibrometer/Interferometer System,' Ph. D, Institute of Applied Mechanics, National Taiwan University, Taipei, 1998.
[75] J. Y. Chen, 'Developing a High-Speed Electronic Speckle Pattern Interferometer: Innovation from Integrating Laser Doppler Interferometry and Time-stepped Phase Shifting Method,' Master, Institute of Applied Mechanics, National Taiwan University, Taipei, 2005.
[76] H. Takajo, and T. Takahashi, 'Least-squares phase estimation from the phase difference,' Journal of Optical Society of America, vol. 5, pp. 416-425, 1988.
[77] H. Takajo, and T. Takahashi, 'Noniterative method for the exact solution for the normal equation in least- square phase extimation from the phase difference,' Journal of Optical Society of America, vol. 5, pp. 1818-1827, 1988.
[78] C. C. Cheng, Y. C. Chen, K. C. Wu, and C. K. Lee, 'The High Bandwidth Automatic Measurement System for Far-field Anisotropic Acoustic Beam Pattern,' presented at the 18th Automation Conference, Touyan, Taiwan, 2010.
[79] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Eds., Fundamental of Acoustics. New York: John Wiley & Sons, Inc, 2000.
[80] Y. H. Su, C. E. Chung, W. C. Ko, C. H. Yang, W. J. Wu, and C. K. Lee, 'Injecting charges on large-area electret thin film by corona multi-pin discharge method,' presented at the Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, West Lafayette, USA, 2010.
[81] H. L. Chen, H. C. Liao, Y. H. Su, Y. C. Chen, W. C. Ko, W. J. Wu, and C. K. Lee, 'Optimizing Charge Distribution in Electret Films by Multiple-needle corona discharges method,' presented at the 14th International Symposium on Electrets, Montpellier, France, 2011.
[82] W. C. Ko, C. K. Tseng, W. J. Wu, and C. K. Lee, 'Charge storage and mechanical properties of porous PTFE and composite PTFE/COC electrets,' E-Polymers, Mar 17 2010.
[83] W. C Ko, C. K. Tseng, I. Y. Leu, W. J. Wu, A.S.Y. Lee, and C. K. Lee, 'Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers,' Smart Materials and Structures, vol. 19, 2010.
[84] D. Olszewski, and K. Linhard, 'Messungen zur Schallerzeugung durch einen parametrischen Ultraschalllautsprecher,' presented at the DAGA, Braunschweig, Germany, 2006.
[85] D. Olszewski, and K. Linhard., 'Optimum array configuration for parametric ultrasound loudspeakers using standard emitters,' presented at the IEEE International Ultrasonics Symposium, 2006.
[86] Y. C. Chen, W. C. Ko, C. H. Liou, W. H. Hsiao, C. C. Cheng, W. J. Wu, P. Z. Chang, and C. K. Lee, 'Exploring the Ultra-directional Acoustic Responses of an Electret Cell Array Loudspeaker,' presented at the 129th AES Conv., San Francisco, USA, 2010.
[87] N. Onuma, S. Koura, T. Tanabu, S. Konishi, Y. Dohi, R. Tagami, and M. Misaki, 'Directivity controlled loudspeaker system and enhanced effects on TV listening in older adults,' Technology and Disability, vol. 12, pp. 21-28, January 01 2000.
[88] K. Allan, 'Audio surround sound - it's behind you!,' Engineering & Technology, vol. 2, pp. 38-40, 2007.
[89] M. Wu, C. Ye, S. Wu, C. Huang, and J. Yang, 'Effects on the Performance of Parametric Loudspeaker Caused by Nonideal Ultrasound Transducer,' Japanese Journal of Applied Physics, vol. 49, 2010.
[90] CLIO, Audiomatica. http://www.audiomatica.com/home.htm.
[91] W. N. House, 'Aspects of the Vehicle Listening Environment,' in 87th AES Conv., New York, AES Preprint 2873, 1989.
[92] EASE, enhanced acoustic simulator for engineers, Version 4.3, http://www.renkus-heinz.com/ease/, March 2011.
[93] G. Kearney, and D. Furlong, 'Auditory Scene Synthesis for Distributed Audiences in E-Learning Applications,' in 120th AES Conv., Paris, France, 2006.
[94] Murata ESTD01. Available: http://www.murata.com/
[95] 'Sound System Equipment. Part 5: Loudspeakers,' ed: IEC Publication.
[96] Y. C. Chen, W. C. Ko, C. H. Liou, W. H. Hsiao, C. C. Cheng, W. J. Wu, P. Z. Chang, and C. K. Lee, 'Exploring Ultra-directional Acoustic Response of an Electret Cell Array Loudspeaker,' in AES 129th Convention, San Francisco, CA, USA, 2010.
[97] V. Moreggia, 'Perspectives for practical application of active control of noise and vibrations in passenger cars,' American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, vol. 93, pp. 9-18, 1996.
[98] C. Hou, W. Peng, X. Jin, C. Hua, and Y. Lin, 'Hardware-In-Loop Simulation of Active Noise Control in Car Cabins,' in Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on, pp. 1-5, 2009.
[99] YAMAHA Digital Sound Projector YSP-5100, http://usa.yamaha.com/products/audio-visual/hometheater-systems/digital-sound-projector/
[100] M. R. Bai, 'Engineering Acoustics,' 2008 (in Chinese).
[101] M. R. Bai, 'Acoustic Theory and Applications: Active Noise Control,' 2001 (in Chinese).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66417-
dc.description.abstract傳統動圈式揚聲器已經發展超過一世紀,因其重量及體積在應用上而有所限制。近年來,因為可撓式駐極體揚聲器比傳統動圈式揚聲器具有多項優點,例如其簡單的構造可達到超薄及輕量的結構,在4C (電腦、通訊、消費性電子及汽車)產品的應用上具有相當的潛力。本論文所探討的可撓式駐極體揚聲器是由間隔材、背板及駐極體材料薄膜所組成的具有許多電容式致動器的陣列結構。
本論文在模擬方面提出了完整的模擬流程,來分析駐極體單一制動器的共振頻率與模態,以及陣列駐極體揚聲器之聲場特性與指向性。因為駐極體揚聲器的低頻表現主要是受到致動器的第一模態所影響,為了不同的應用而欲調制具寬頻的駐極體揚聲器,則每個致動器的形狀與大小將依不同的需求而有所調整。此外,駐極體揚聲器的指向性對於應用時的效果也有很大的影響,本究所發展的駐極體揚聲器可藉由結構設計的概念而具有不同的指向性,所以,研究過程中利用有限元素分析去評估駐極體揚聲器的振動模態及指向性特性,提出能夠改善駐極體揚聲器效能的設計。
量測系統方面,為了驗證有限元素分析的模擬結果,本研究建置兩套可量測奈米級振動的非接觸式光學檢測系統,其中的雷射都譜勒振動量測儀暨干涉儀(AVIDTM)用來量測駐極體致動器的振動,再使用電子斑點干涉系統(ESPI)去量測駐極體致動器的模態變形。另外一個系統乃是一套可量測大面積駐極體薄膜的表面電壓分布之自動量測系統,此外,為了量測駐極體揚聲器的聲學特性及指向性,亦建置了一套高頻寬、高動態範圍之自動量測系統。模擬結果與實驗有良好的一致性。這些模擬不僅可用來設計可撓式駐極體揚聲器,更可以輔助設計調製駐極體揚聲器之聲學特性。
為了驗證研究過程中所建置的模型與實驗系統,本論文以汽車中揚聲器的應用為平台,研析揚聲器配置於汽車內不同位置時,所可營造出來的聲場分佈,並依照實車大小、材料參數為條件建立了一個模擬模型,並將現有的車用揚聲器與本論文所提出的駐極體揚聲器進行比較與討論。輕薄的駐極體致動器能裁切並組成任意形狀的駐極體揚聲器,而可安裝於汽車內的任意位置,故可重新設計車內聲場,除此之外,駐極體揚聲器還確認具有省能、良好的頻率響應、體積小、輕量及可撓性等優點。這個應用情境中,駐極體揚聲器的成功設計、製造、驗證進一步的確認了本論文所得成果的可應用性和正確性。
zh_TW
dc.description.abstractConventional coil speakers have been developed for more than a century. However, expanding coil speakers into more futuristic applications often are limited by their weight and volume. Recently, flexible electret-based loudspeakers triggered many renewed interests due to their advantages over conventional coil speakers such as a simple and compact construction made from ultra-thin lightweight structures. Electret loudspeakers thus have many potential futuristic applications for 4C products (computers, communication, consumer electronics, and cars). The flexible electret-based loudspeaker presented in this dissertation consisted of spacer grids, back plates and electret membranes that were constructed by integrating many small capacitance type actuators to form an array structure.
Simulations of electret cell actuator were used to derive the resonance and the corresponding modes. Since the low frequency performance of an electret loudspeaker is greatly affected by the first mode of each electret cell actuator, the shape and size of each cell actuator were tailored according to the specific requirements in order to vary the bandwidth of the electret loudspeaker for different applications. Furthermore, the performance is also mainly determined by the directivity of the electret loudspeaker. It was discovered that the novel electret loudspeaker possesses various directivities from a structural design aspect. Finite element analysis (FEA) was used to evaluate and to design the vibration mode and the directivity characteristics of the electret loudspeaker developed.
AVID (advanced vibrometer/interferometer device) system and ESPI (electronic speckle pattern interferometry) system, both of which were non-destructive optical detection tools, were used to measure the vibration and the vibration mode shape of the electret cell actuators, respectively. A large-area surface potential measurement system was designed and constructed. A high bandwidth automatic acoustic measurement system was also developed to investigate the acoustic characteristic and directivity of the electret loudspeaker. Experimental results obtained confirmed the effectiveness of the simulation results. Finally, the sound characteristics of a flexible electret loudspeaker were tailored using the modeling and understanding obtained to improve the performance to the desired specifications.
To further test the validity of the simulation and experimental model developed, applying the electret speakers in an automotive condition was attempted. To observe the SPL distribution at the passengers’ ears for loudspeakers installed at various locations, simulation model of the car cabin was first established. The performance of current vehicle installed coil speakers were compared to that of the newly developed electret loudspeaker. It was discovered both by simulation and by experimental verifications that the electret device possesses many advantages including installed locations, power consumption, sensitivity, volume, weight and flexibility when compared to that of the traditional coil speakers. The successful design, construction, and verification of the automotive used electret speakers provided a nice verification to the validity of the research results presented in this dissertation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:34:47Z (GMT). No. of bitstreams: 1
ntu-101-D95543002-1.pdf: 12774346 bytes, checksum: d46d0f2a10c3d9a5f419111316d2298d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsABSTRACT i
ABSTRACT (CHINESE) iv
TABLE OF CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xix
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Motivation 11
1.3 Thesis organization 14
Chapter 2 Theory and Methodology 17
2.1 Operating principles of electret loudspeaker 17
2.2 Governing equations of array-based electret loudspeaker 31
2.2.1 Wave equation 31
2.2.2 Far-field pressure 33
2.2.3 Beam pattern of an array 33
2.2.4 Directivity by amplitude modulation with ultrasound 40
2.3 Principle of Advanced Vibrometer / Interferometer Device (AVIDTM) 42
2.4 Principle of electronic speckle pattern interferometry (ESPI) 48
Chapter 3 Experimental Set-up 53
3.1 Advanced Vibrometer/Interferometer Device (AVIDTM) 53
3.2 Electronic speckle pattern interferometry (ESPI) 58
3.3 High bandwidth automatic acoustic measurement system 64
3.3.1 Frequency response measurement 65
3.3.2 Measurement of beam pattern 67
3.4 Large-area multi-pin corona discharge & automatic surface potential measurement system 71
3.5 Fabrication of a flexible electret loudspeaker 79
Chapter 4 Results & Discussions 85
4.1 Simulation and experiment of cell actuator formation 85
4.1.1 Prototype of cell actuator in various shape and size 85
4.1.2 Simulation model of electret cell actuator 87
4.1.3 The first resonance of electret cell actuator 88
4.1.4 The first mode of electret cell actuator 92
4.1.5 Acoustic response of electret cell actuator 96
4.2 Simulation and experiment of the directivity of the array-based electret loudspeaker 97
4.2.1 Directivity influenced by frequency 98
4.2.2 Directivity by amplitude modulation with ultrasound 102
4.2.3 Directivity influenced by size of array 107
4.2.4 Directivity influenced by layout configuration 108
4.2.5 Directivity influenced by spacer of structure 114
4.3 Distribution of surface potential 122
4.4 Applications of free-form electret loudspeaker 125
Chapter 5 An Array-based Electret Loudspeaker for Automotive Application 128
5.1 Introduction 128
5.2 Experimental set-up 130
5.2.1 Device fabrication process 130
5.2.2 Measurement system set-up 131
5.3 Results and discussions 132
Chapter 6 Conclusions and Future Works 150
6.1 Conclusions 150
6.2 Future works 151
Reference 156
Appendix A: Table of experimental conditions of fabricated electret loudspeakers 164
Curriculum Vitae 165
dc.language.isoen
dc.subject雷射都譜勒振動量測儀暨干涉儀zh_TW
dc.subject指向性zh_TW
dc.subject共振頻率zh_TW
dc.subject致動器zh_TW
dc.subject揚聲器zh_TW
dc.subject駐極體zh_TW
dc.subject電子斑點干涉系統zh_TW
dc.subjectelectronic speckle pattern interferometryen
dc.subjectadvanced vibrometer/interferometer deviceen
dc.subjectdirectivityen
dc.subjectresonanceen
dc.subjectactuatoren
dc.subjectloudspeakeren
dc.subjectelectreten
dc.title陣列結構駐極體揚聲器系統之設計與研製zh_TW
dc.titleDesign and Experimental Implementation of Array-based Electret Loudspeaker Systemen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.coadvisor張培仁
dc.contributor.oralexamcommittee吳政忠,白明憲,金際遠,徐紹中,吳文中
dc.subject.keyword駐極體,揚聲器,致動器,共振頻率,指向性,雷射都譜勒振動量測儀暨干涉儀,電子斑點干涉系統,zh_TW
dc.subject.keywordelectret,loudspeaker,actuator,resonance,directivity,advanced vibrometer/interferometer device,electronic speckle pattern interferometry,en
dc.relation.page175
dc.rights.note有償授權
dc.date.accepted2012-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
12.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved