Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙治宇(Chih-Yu Chao)
dc.contributor.authorLi-Chen Huangen
dc.contributor.author黃麗真zh_TW
dc.date.accessioned2021-06-17T00:34:38Z-
dc.date.available2015-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-07
dc.identifier.citationChapter 1
1. P. Yeh and C.Gu, Optics of Liquid Crystal Displays, ed. J. W. Goodman (John Wiley & Sons, Inc., 1999)
2. 'History and Properties of Liquid Crystals'. Nobelprize.org
3. G. Stojmenovik, Ion Transport and Boundary Image Retention in Nematic Liquid Crystal Displays (Universiteit Gent, 2004)
4. 陳培翔,國立臺灣大學物理系研究所博士論文,2009年。
5. VadimV. Krongauz, E. Richard Schmelzer, and Robert M. Yohannan, Polymer 32, 1654 (1991)
6. Roel Penterman, Stephen I. Klink, Joost P. A. Vogels, Edzer A. Huitema, Henk de Koning, and Dirk J. Broer, Flexible Flat Panel Displays, ed. G. P. Crawford (John Wiley & Sons, Ltd., 2005)
7. Y. Xia and G. M. Whitesids, Annu, Rev. Mater. Sci. 28, 153 (1998)
8. J. L. Wilbur, A. Kumar, E. Kim, and G. M. Whitesides, Adv. Mater. 6, 600 (1994)
9. A. Kumar and G. M. Whitesides, Appl. Phys. Lett. 63, 2002 (1993)
10.Y. Xia, E. Kim, X. -M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides. Science 273, 347 (1996)
11. M. C. Hutley, Diffraction Gratings (New York: Academic, 1982)
12. B. D. Terris, H. J. Mamin, M. E. Best, J. A. Logan, and D. Rugar, Appl. Phys. Lett. 69, 4262 (1996)
13. D. A. Kiewit. Rev. Sci. Instrum. 44, 1741 (1973)
14 X. -M. Zhao, Y. Xia, and G. M. Whitesides, Adv. Mater. 8, 837 (1996)
15. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)
16. E. Kim, Y. Xia, and G. M. Whitesides, Nature 376, 581 (1995)
17. E. Kim, Y. Xia, and G. M. Whitesides, J. Am. Chem. Soc. 118, 5722 (1997)
18. E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. A. Biebuyck, Science 276, 779 (1997)
19. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, J. Colloid Interface Sci. 1, 513 (1946)
20. D. K. Schwartz, Annu. Rev. Phys. Chem. 52, 107 (2001)
21.A. L. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105,1103 (2005)
22. S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices. SPIE Press. pp. 94–96 (2006)
23. A. Ulman, Chem. Rev. 96, 1533 (1996)
24. A. Ulman, An Introduction to Ultrathin Organic Films (Academic Press: Boston, 1991)
25. R. Maoz and J. Sagiv, J. Colloid Interface Sci. 100, 465 (1984)
26. J. Gun, R. Iscovici, and J. Sagiv, J. Colloid Interface Sci. 101, 201 (1984)
27. J. Gun and J. Sagiv, J. Colloid Interface Sci. 112, 457 (1986)
28. H. O. Finklea, L. R. Robinson, A. Blackburn, B. Richter, D. L. Allara, and T. Bright, Langmuir 2, 239 (1986)
29. P. Silberzan. L. Leger, D. Ausserre, and J. J. Benattar, Langmuir, 7, 1647 (1991)
Chapter 2
1. J. Duparre, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Brauer, A. Tunnermann, R. Volkel, M. Eisner, and T. Scharf, Optics Express, 13, 889 (2005)
2. D.M. Hartmann, O. Kibar, and S. C. Esener, Opt. Lett. 25, 975 (2000)
3. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, Appl. Optics 38, 2991 (1999)
4. Y. Lu, Y. Yin, and Y. Xia, Adv. Mater. 13, 34 (2001)
5. W. R. Cox, T. Chen, and D. Hayes, Optics and Photonics News (2001)
6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Adv. Mater. 17, 401 (2009)
7. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004)
8. K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, Appl. Opt. 44, 1792 (2005)
9. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, Opt. Express 11, 2370 (2003)
10. Y. Osada, J. P. Gong, and Y. Tanaka, J. Macromol. Sci. Polym. Rev. 44, 87 (2004)
11. PhD theses of Dr. Paul van Hal and Dr. Jeroen van Duren in Eindhoven University of Technology, The Netherlands.
12. K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004)
13. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986)
14. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999)
15. T. J. Savenije, J. M. Warman, and A. Goossens, Chem. Phys. Lett. 287, 148 (1998)
16. G. Yu and A. J. Heeger, J. Appl. Phys. 78, 4510 (1995)
17. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature 376, 498 (1995)
18. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270,1789 (1995)
19. K. M. Coakley and M. D. Mcgehee, Appl. Phys. Lett. 83, 3380 (2003)
20. B. Kippelen and J. Bredas, Energy Environ. Sci. 2, 251 (2009)
Chapter 3
1. R. Tadmor, Langmuir, 20, 7659 (2004)
2. M. Lӧgdlund, R. Lazzroni, S. Stafstrӧm, and W. R. Salaneck, Phys. Rev. B, 63, 1841 (1989)
3. Hiroyuki Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley, Inc., 2007)
4. Website: http://www.jawoollam.com/faq.html
Chapter 4
1 K. Tvingstedt, S. Zilio, O. Inganas, and M. Tormen, Opt. Express, 16, 21608 (2008)
2 T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 82, 3692 (2003)
3 Peng Q, Guo Y, Liu S, and Cui Z, Opt. Lett., 27, 1720 (2002)
4 R. Danzebrink and M. A. Aegerter, Thin Solid Films, 351, 115 (1999)
5 B. K. Lee, K. J. Cha, and T. H. Kwona, Microelectron. Eng., 86, 857 (2009)
6 C. Dorrer, O. Prucker, and J. Ruhe, Adv. Mater., 19, 456 (2007)
7 L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Adv. Mater., 19, 401 (2007)
8 H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, Jpn. J. Appl. Phys., 41, 5302 (2002)
9 R. Penterman, S. I. Klink, H. Koning, G. Nisato, and D. J. Broer, Nature, 417, 55 (2002)
10 J. I. Beadk, J. H. Shin, M. C. Oh, J. C. Kim, and T.-H. Yoon, Appl. Phys. Lett., 88, 161104 (2006)
11 T. Qian, J. H. Kim, S. Kumar, and P. L. Taylor, Phys. Rev. E, 61, 4007 (2000)
12 A. J. Lovinger, K. R. Amundson, and D. D. Davis, Chem. Mater., 6, 1726 (1994)
13 S. Sinzinger and J. Jahns, in Microoptics, 2nd edition (Wiley–VCH, Weinheim, Germany, p.86 , 2003)
14 F. C. Chen, W. K. Huang, and C. J. Ko, IEEE Photonics Technol. Lett., 18, 2454 (2006)
15 A. Tripathi, T. V. Chokshi, and N. Chronis, Opt. Express, 17, 19908 (2009)
Chapter 5
1 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995); J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001)
2 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005)
3 W. L. Ma, C. Y. Yang, X. Gong, K. H. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005); Y. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha and M. Ree, Nat. Mater. 5, 197 (2006); G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010)
4 A. Elschner, F. Bruder, H.-W. Heuer, F. Honas, A. Karbach, S. kirchmeyer, S. Thurm, and R. Wehrmann, Synth. Met. 111-112, 139 (2000)
5 J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007)
6 M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000)
7 H. K. Lee, J. K. Kim, and O. O. Park, Org. Electro. 10, 1641 (2009)
8 Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, Appl. Phys. Lett. 97, 033309 (2010)
9 K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, Appl. Phys. Lett. 80, 2788 (2002)
10 G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254, 1312 (1991)
11 Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, Adv. Mater. 20, 2211 (2008)
12 S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, Adv. Funct. Mater. 16, 95 (2006)
13 B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621 (2005)
14 B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, Chem. Rev. 105, 1171 (2005)
15 D. L. Angst and G. W. Simmons, Langumuir 7, 2236 (1991)
16 Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)
17 A. Kahn, N. Koch, and W. Gao, J Polym. Sci., Part: Polym. Phys. 41, 2529 (2003)
18 D. M. Alloway, M. hormann, D. L. Smith, N. E. Gruhun, A. L. Graham, R. Colorado, V. H. Wysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, J. Phys. Chem. B. 107, 11690 (2003)
19 C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Appl. Phys. Lett., 80, 1288 (2002); E. Ahlswede, J. Hanisch, and M. Powalla, Appl. Phys. Lett. 90, 163504 (2007)
20 C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001)
21 S. K. Hau, H. L. Yip, O. Acton, N. S. Back, H. Ma, and A.-Y. Jen, J. Mater. Chem. 18, 51113 (2008)
22 C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001)
23 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005)
24 W. L. Ma, C. Y. Yang, X. Gong, K. H. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617(2005)
25 Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.–S. Ha, and M. Ree, Nat. Mater. 5, 197 (2006)
26 G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010)
27 B. Crone, A. Dodabalapur, Y.–Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature 403, 521 (2000)
28 L. B. Groenendaal, F. Jonas, D. Freitag. H. Pielartzik, and J. R. Reynolds, Adv. Mater. 12, 481 (2000)
29 T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. 75, 1679 (1999); V. Shrotriya, G. Li, Y. Yao, C. W. Chu and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)
30 D. Li and L. J. Guo, Appl. Phys. Lett. 88, 063513 (2006)
31 X. D. Daang, M. Dante and T. Q. Nguyen, Appl. Phys. Lett. 93, 241911 (2008)
32 F. Zhang, T. Nyberg, and O. Inganas, Nano Lett. 2, 1373 (2002)
33 Y. Yang, K. Lee, k. Mielczarek, W. Hu and A. Zakhidov, Nanotechnology 22, 485301 (2011)
34 de P. G. Gennes and J. Prost, The Physics of Liquid Crystals; Oxford University Press: New York, 1993.
35 M. Nishikawa, N. Bessho, T. Natsui, Y. Ohta, N. Yoshida, D.–S. Seo, Y. Iimura, Y., and S. Kobayashi, Mol. Cryst. Liq. Cryst. 275, 15 (1999); D.–S. Seo, O.-I. Toshio, H. Matsuda, T.–R. Isogami, K.–I. Muroi, Y. Yabe, and S. Kobayashi, Mol. Cryst. Liq. Cryst. 231, 95 (1993)
36 R. S. Loewe, S. M. Khersonsky, and R. D. McCullough, Adv. Mater. 11, 250 (1999)
37 V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006)
38 J. A. Castellano, Mol. Cryst. Liq. Cryst. 94, 33 (1983)
39 A. Adamson, Physical Chemistry of surfaces, 3rd ed. (John Wiley & Sons, N. Y., p.246 ,1976)
40 M. D. Irwin, D. A. Roberson, R. I. Olivas, R. B. Wicker and E. MacDonald, Fiber Polym. 12, 904 (2011)
41 D. -S. Seo and S. Kobayashi, Appl. Phys. Lett. 61, 2392 (1992)
42 B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. Samuel, Adv. Mater. 13, 123 (2001)
43 V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 063505 (2006)
44 C. Melzer, E. J. Koop, V. D. Mihailetchi and P. W. M. Blom, Adv. Funct. Mater. 14, 865 (2004)
45 H. L. Cheng, Y. S. Mai, W. Y. Chou, R. L. Chang and X. W. Liang, Adv. Funct. Mater. 17, 3639 (2007)
46 M. H. Chang, W. Y. Chou, Y. C. Lee, H. L. Cheng and H. Y. Chung, Appl. Phys. Lett. 97, 183301 (2010)
47 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995)
48 P. J. Brown, D. S. Thomas, A. Kӧhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B 67, 064203 (2003)
49 H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010)
50 R. M. Amos and W. L Barnes, Phys. Rev. B 59, 7708 (1999)
51 L. E. Mohammed and M. Schadt, Nature 410, 796 (2001)
52 M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley and J. Nelson, Nature Mater. 7, 158 (2008)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66414-
dc.description.abstract本論文旨在探討新穎材料於光電元件上的製作與應用,此類對光有特殊作用的材料包括光聚合高分子與具導電性的共軛高分子。在此研究中,我們成功地使用液晶與高分子混合物,並藉由相分離方式製做出微透鏡陣列。此外,近幾年綠能源逐漸成為大家關注的議題,我們也嘗試使用軟壓印方法與摩擦配向技術應用於有機太陽能電池元件,除改善與簡化煩瑣的製作過程,並達成提升效率與其光電物理性質。
在微透鏡陣列的主題中,使用常溫下紫外光聚合方式引誘液晶/光聚合分子相分離的過程製做出自我組裝的微透鏡陣列。由於液晶與光聚合分子對於紫外光有不同的吸收能力,藉由光罩的輔助結果下,光聚合分子在曝光處硬化;同時,液晶則被推擠在遮光處,因而形成相分離的柱狀結構。之後,藉由破壞柱狀結構而產生表面張力不一致的區域,因表面張力差異性驅使未聚合完全的光聚合分子移動,且聚集自我組裝形成凸透鏡的陣列。此方式製做的微透鏡陣列不只整齊均勻且有效地呈現聚光能力,並期可運用在太陽能電池或發光二極體元件。
在太陽能電池方面我們採用常見的塊材異質接面(bulk heterojunction)主動層材料P3HT與PCBM製作元件。第一部分則採用軟壓印法將自組裝單分子層材料(CF3-silane)改質電極表面,使之成為太陽能元件中的電子阻絕層(EBL)。從研究結果可知,與一般常使用的PEDOT:PSS相較之下,CF3-silane擁有較高的功函數並與主動層材料的HOMO相近,此外因為單分子薄膜不僅透光度佳,且具有修飾ITO玻璃表面缺陷的作用;甚而,因為CF3 分子的疏水性質,可以改善主動層成膜的特性並輔助電子施體與電子受體材料之間相分離。第二部分,引入液晶面板界廣泛使用摩擦配向技術來製作有機太陽能電池元件。利用此簡單的技術在PEDOT:PSS表面快速地產生奈米級溝槽,並有效地增加主動層的光吸收率。此外,由於溝槽的表面形態有利於激子分離後,以確保電荷傳輸至電極並減少再結合現象發生。研究結果顯示,用具有奈米溝槽的PEDOT:PSS可以增加與主動層之間的接觸面積,並讓元件的光電轉換效率從原先的3.45%提升至3.82%。
zh_TW
dc.description.abstractNovel materials, liquid crystals, photopolymers and conducting polymers, have many significant applications in micro optics, organic photovoltaic (OPV) cells and liquid crystal displays (LCD) manufacturing. In this dissertation, we successfully fabricate polymer microlens arrays and polymer solar cell devices by using these materials and investigate the electric, optical and physical properties to characterize their several advantages and vantages in the future position for optoelectronic devices.
At first, a low-temperature self-assembly method using phase separation is demonstrated for the first time to fabricate polymer microlens arrays. In this study, we present a simple method of producing microlens arrays based on liquid crystal/photopolymer blends phase separation. The morphology of the microlens arrays has been measured by SEM, AFM and scanning white light interferometer. Our results show that the microlens arrays obtained from our experiments have a comparable light-gathering capability and can be applied in optical systems.
In the latter, there are two topics concerning polymer solar cells. The first one is “Self-Assembled Multilayers Modified ITO in Polymer Solar Cells by Soft-Imprinting”. In this work, surface modification of indium tin oxide (ITO)-coated substrates through the use of self-assembled multilayers by the soft-imprinting method has been applied to adjust the anode work function and device performance in polymer solar cells based on a P3HT:PCBM heterojunction. The efficiency and morphology of the solar device with CF3-terminal group materials as a buffer layer have been measured and investigated. These results demonstrate that the soft-imprinting method is an effective and rapid procedure that enhances the quality of polymer solar cells and indicates potential implications for other organic devices containing an interface between a blended organic active layer and an electrode layer.
In the second topic, we represent a fascinating approach – the rubbing method – to produce periodic grooves of PEDOT:PSS layer and apply it in polymer solar cells based on a P3HT:PCBM heterojunction. The 500 nm wide and 10 nm deep grating-like features have a profound effect on carrier mobility, light trapping and hole collection efficiency, leading to an increase in the short circuit density, filling factor and power conversion efficiency. These results indicate the feasibility of the rubbing method which is applicable to high-efficiency OPV cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:34:38Z (GMT). No. of bitstreams: 1
ntu-101-D95222018-1.pdf: 3324160 bytes, checksum: 1e959e3a67c636f2e49102db942e37df (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Liquid Crystals 1
1.2 Photopolymerization and Phase Separation 8
1.2.1 Photopolymerization 8
1.2.2 Phase Separation 11
1.3 Soft Lithography 13
1.3.1 Microcontact Printing (μCP) 13
1.3.2 Replica Molding (REM) 15
1.3.3 Microtransfer Molding (μTM) 16
1.3.4 Solvent-Assisted Micromolding (SAMIM) 17
1.3.5 Micromolding in Capillaries (MIMIC) 18
1.4 Self-Assembly Monolayers (SAMs) 20
1.4.1 Structure of Self-Assembled Monolayer 20
1.4.2 Mechanism of Organosilicon SAM formation 21
1.5 References 25
Chapter 2 Literature Reviews 28
2.1 Introduction of Microoptics 28
2.2 Reviews for Polymer Microlens Arrays Fabrication 29
2.2.1 Hydrophobic Effect 30
2.2.2 Ultraviolet-Cured Polymer 31
2.2.3 A Self-Assembly Approach 32
2.2.4 Microjet Fabrication 33
2.2.5 Thermoresponsive Hydrogels 34
2.3 Introduction of Organic Photovoltaic Cells 35
2.4 Reviews for Polymer Solar Cell Devices 38
2.4.1 Bi-layer PV Cell 39
2.4.2 Disordered Bulk-Heterojunction 40
2.4.3 Ordered Bulk-Heterojunction 41
2.5 Solar cell Device Performance Parameters 43
2.6 References 45
Chapter 3 Experimental Methods 47
3.1 Contact Angle Measurement 47
3.2 Ultraviolet Photoemission Spectra Measurement 50
3.3 Spectroscopic Ellipsometer 52
3.4 Optical Absorption & Photoluminescence Spectra Measurement 53
3.5 IPCE Measurement 55
3.6 References 56
Chapter 4 Photopolymerized Self-Assembly Microlens Arrays
based on Phase Separation 57
4.1 Introduction 57
4.2 Sample Preparation 61
4.3 Results and Discussions 63
4.3.1 Morphologies of self-assembled microlens arrays 66
4.3.2 Optical parameters calculation 68
4.3 Summary 72
4.4 References 73
Chapter 5 Polymer Solar Cell Devices 75
5.1 Self-Assembled Multilayers Modified ITO in Polymer Solar
Cells by Soft-Imprinting 75
5.1.1 Introduction 76
5.1.2 Experiments 81
5.1.3 Results and Discussions 87
5.1.4 Summary 95
5.2 Patterning of PEDOT:PSS Films via the Rubbing Method in
Organic Photovoltaic Cells 98
5.2.1 Introduction 98
5.2.2 Experiments 104
5.2.3 Results and Discussions 107
5.2.4 Summary 120
5.3 References 121
Chapter 6 Conclusion 127
Publication List 131
dc.language.isoen
dc.subject高分子太陽能電池zh_TW
dc.subject自組裝薄膜zh_TW
dc.subject液晶zh_TW
dc.subject光聚合zh_TW
dc.subject相分離zh_TW
dc.subject微透鏡陣列zh_TW
dc.subject摩擦配向zh_TW
dc.subject異質接面形態zh_TW
dc.subjectorganic photovoltaic cellen
dc.subjectthe rubbing methoden
dc.subjectbulk heterojunctionen
dc.subjectliquid Crystalsen
dc.subjectphotopolymerizationen
dc.subjectphase separationen
dc.subjectmicrolens arraysen
dc.subjectself-assembled multilayersen
dc.title液晶與高分子對於光電元件的製作與應用zh_TW
dc.titleLiquid Crystals and Polymers in Application of Opto-Electronic Devicesen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee王安邦,王立義,林清富,傅昭銘,劉祥麟
dc.subject.keyword液晶,光聚合,相分離,微透鏡陣列,自組裝薄膜,高分子太陽能電池,異質接面形態,摩擦配向,zh_TW
dc.subject.keywordliquid Crystals,photopolymerization,phase separation,microlens arrays,self-assembled multilayers,organic photovoltaic cell,bulk heterojunction,the rubbing method,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2012-02-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved