Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-chi Li)
dc.contributor.authorKai-Han Huangen
dc.contributor.author黃概瀚zh_TW
dc.date.accessioned2021-06-17T00:34:28Z-
dc.date.available2014-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-07
dc.identifier.citation[1] M. Arditi, W.B. Taylor, F.S. Foster and J.W. Hunt, 'An annular array system for high-resolution breast echography, 'Ultrason. Imaging.vol.4, pp. 1-31, 1982.
[2] G. R. Lockwood, D. H. Turnbull, D. A. Christopher and F. S. Foster, 'Beyond 30 MHz - Applications of high-frequency ultrasound imaging,' IEEE Eng. Med. Biol., vol.15, pp.60-71, 1996.
[3] D. H. Turnbull, B. G. Starkoski, K. A. Harasiewicz, J. L. Semple, L. From, A. K. Gupta, D. N. Sauder and F. S. Foster, 'A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging,' Ultrasound Med. Biol., vol. 21, pp.79-88, 1995.
[4] D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata and H. Lincoff, 'High-resolution ultrasonic imaging of the posterior segment,' Ophthalmology, vol.111, pp.1344-1351, 2004.
[5] F. S. Foster, M. Zhang, A. S. Duckett, V. Cucevic and C. J. Pavlin, 'In vivo imaging of embryonic development in the mouse eye by ultrasound biomicroscopy,'Invest. Ophthalmol. Vis. Sci., vol. 44, pp.2361-2366, 2003.
[6] W.G. Cady, 'Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, New rev. ed., 2 vols.' NY: Dover, 1964.
[7] G. S. Kino,' Acoustic Waves. Prentice-Hall, Englewood Cliffs,'NJ,1987.
[8] K. K. Shung, J. M. Cannata and Q. F. Zhou, 'Piezoelectric materials for high frequency medical imaging applications: A review,' J. Electroceram., vol.19, pp. 141-147, 2007.
[9] M. J. Zipparo, K. K. Shung and T. R. Shrout, 'Piezoceramics for high-frequency (20-100 MHz) single-element imaging transducers,'IEEE Trans. Ultrason, Ferroelect.Freq. Contr., vol.44,pp.1038-1048, 1997.
[10] D. A. Knapik, B. Starkoski, C. J. Pavlin and F. S. Foster, 'A real time 200 MHz ultrasound B-scan imager,'in Proc.IEEE Ultrason. Symp., pp.1457-1460, 1997.
[11] M. D. Sherar and F. S. Foster, 'The design and fabrication of high frequency poly(vinylidene fluoride) transducers,'Ultrason. Imaging, vol.11, pp.75-94, 1989.
[12] G.R. Lockwood, D.H. Turnbull and F.S. Foster, 'Fabrication of high frequency spherically shaped ceramic transducers,'IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol.41, pp.231-235, 1994.
[13] K.A. Snook, J.Z. Zhao, C.H.F. Alves, J.M. Cannata, W.H. Chen,J.J. Meyer, T.A. Ritter and K.K.Shung , 'Design, fabrication, and evaluation of high frequency, single-elementtransducers incorporating different materials,'IEEE Trans. Ultrason. Ferroelect. Freq. Contr.,vol.49,pp.169-176,2002.
[14] J.M. Cannata, T.A. Ritter, W.H. Chen, R.H. Silverman and K.K. Shung,'Design of Efficient, Broadband Single-Element (20-80 MHz) Ultrasonic Transducers for Medical Imaging Applications,'IEEE Trans. Ultrason.Ferroelect.Freq.Contr., vol. 50, pp.1548-1557, 2003.
[15] C.H.F. Alves, K. Snook, T. Ritter and K.K. Shung, 'High frequency single element and annular array transducers incorporating PVDF,'SPIE Med. Imag., vol.3982, pp.116-121,2000.
[16] A. R. Selfridge, 'Approximate material properties in isotropic materials,'IEEE Trans. Son. Ultras., vol.3, pp.381-394, 1985.
[17] S. Thiagarajan, I. Jayawyrdena and R. W. Martin, 'Design of 20 MHz wideband piezoelectric transducers for close-proximity imaging,'Biomed. Sci.Instrum., vol.27, pp. 57-65, 1991.
[18] M. I. Haller and B. T. Khuri-Yakub, 'Tapered acoustic matching layers,'in Proc.IEEE Ultrason. Symp., vol.1,pp.505-508, 1994.
[19] C. M. Sayers and C. E. Tait, 'Ultrasonic properties of transducer backings,'Ultrasonics, vol.22, pp. 22-57,1984.
[20] M. G. Grewe, 'Acoustic properties of particlepolymer composites for ultrasonic transducer backing applications,'IEEE Trans. Ultrason, Ferroelect. Freq. Contr.,vol.37, pp. 506-514, 1990.
[21] S. Rhee, T. A. Ritter, K. K. Shung, H. Wangand W. Cao, 'Materials for acoustic matching in ultrasound transducers,'in Proc. IEEE Ultrason. Symp., Vol.2, pp.1051-1055,2001.
[22] W. Haifeng, T. A. Ritter, C. Wenwu, K. K. Shung, 'High frequency properties of passive materials for ultrasonictransducers,'IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.48, pp.78-84, 2001.
[23] G. R. Lockwood, D. H. Turnbull and F. S. Foster, 'Fabrication of high frequency spherically shaped ceramic transducers,' IEEE Trans. Ultrason, Ferroelect. Freq. Contr., vol. 41, pp.231-235, 1994.
[24] R. E. Collin, 'Theory and design of wide band multi section quarter-wave transformers,'Proc. IRE, vol. 43, pp.174-185, 1955.
[25] K. K. Shung, 'Diagnostic Ultrasound: Imaging and Blood Flow Measurements,' CRC Press ,2006.
[26] M. Arditi, W.B. Taylor, F.S. Foster and J.W. Hunt,'An annular array system for high-resolution breastechography, 'Ultrason. Imaging, vol.4, pp.1-31, 1982.
[27] J.H. Liu, S.Y. Chenand P.C. Li, 'A single-element transducer with non-uniform thickness for high-frequency broadband applications,' IEEE Trans. Ultrason, Ferroelect. Freq. Contr., vol. 56, pp.379-386, 2009.
[28] PZFLEX User’s manual, Version 1-J9, September 2004
[29] N.N. Abboud, G.L. Wojcik, D.K. Vaughan, J. Mould, D.J. Powell and L. Nikodym, 'Finite element modeling for ultrasonic transducers,' SPIE Med. Imag.,1998.
[30] J. Kocbach, 'Finite element modeling of ultrasonic piezoelectric transducers,' PhD Thesis, Bergen University. Norway, 2000, pp.1–214.
[31] J. M. Cannata, J. Z. Zhao, S. Ayyappan, T. A. Ritter, W. Chenand K. K. Shung, 'Fabrication of high frequency (25-75 MHz) single element ultrasonic transducers, 'in Proc. IEEE Ultrason. Symp., Vol. 2, pp. 1099-1103, 1999.
[32] H. Wang, T. R. Ritter, W. Cao and K. K. Shung, 'Passive Materials for High Frequency Ultrasound Transducers', SPIE Med. Imag., Vol. 3664, pp. 35-42, 1999.
[33] D. L. Liu and R. C. Waag , 'Propagation and back-propagation for ultrasonic wavefront design,'IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.44, pp.1-12, 1997.
[34] R. E. McKeighen, 'Design guidelines for medical ultrasonic arrays,' in Proc. SPIE Med. Imag., vol. 3341, pp. 2–18, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66411-
dc.description.abstract本研究提出以頻率編碼孔徑假說來改善單一探頭因為聚焦點固定而使景深範圍受限的缺點。頻率編碼孔徑指的是當單一探頭的壓電材料具有不同厚度的單元時,可以藉由編輯發射訊號的頻率範圍來控制探頭中對應頻率響應的單元,使單一探頭也可以達到發射聚焦的效果,克服景深範圍因為聚焦點固定的限制。為了驗證頻率編碼孔徑假說,本研究以單一探頭架構為基礎,設計一個非均勻厚度的環形探頭。非均勻厚度的環形探頭是由六個等表面積但不同厚度的同心圓所構成,孔徑大小為6 mm,厚度依序由內向外遞增10 μm,最內圈的頻率為61.17 MHz(60μm),最外圈則為33.36 MHz(110μm)。當發射波形是由低頻向高頻變化的升頻編碼訊號時,環形探頭會依序由外向內被激發而使探頭聚焦延遲曲線的曲率增加,使探頭聚焦在較淺的位置。反之,當發射波形是由高頻往低頻變化的降頻編碼訊號時,環形探頭會由內向外被激發而使探頭聚焦延遲曲線的曲率減少,使探頭聚焦在較深的位置。如此,發射聚焦的效果不需使用陣列就可以實現。
根據PzFlex模擬的結果顯示,當環形探頭的頻寬為80%時,以降頻編碼訊號作為發射訊號時,環形探頭的景深範圍可以增加約133%,但橫向解析度同樣維持在未編碼之前的100μm。而當環形探頭的頻寬降低至10%時,雖然同樣利用頻率編碼波形可以讓景深範圍增加至280%且聚焦點偏移約0.6mm,但橫向解析度也會降低至127μm。我們實際製作的環形探頭頻寬約有80%,同樣使用降頻編碼波形後,環形探頭約可以增加64%的景深範圍,而且橫向解析度保持與未編碼之前相同,約在100μm左右,與模擬的結果相符。本研究成功利用頻率編碼的方式使環形探頭的景深範圍得到改善,並且證明當環形探頭頻寬降低時,可以利用頻率編碼孔徑的方式達到近似陣列探頭發射聚焦的效果。
zh_TW
dc.description.abstractThe hypothesis of this research is that frequency encoded aperture can be used to improve depth of focus (DOF). Frequency encoded aperture refers to the transducer design where different positions on the aperture have different frequency response. To test the hypothesis, a non-uniform thickness single element annular transducer (SEAT) is proposed. The sub-elements have different frequency response and thus can be controlled by different excitation signals. Because it is spatially separable, dynamic focusing can be achieved to some extent and thus DOF can possibly be improved. In this study, we design two types of coding signals which is up-frequency coding signal (frequency increased with time) and down-frequency coding signal (frequency decreased with time). When we choose the up-frequency coding signal, the curvature of delay profile increase and the focal depth becomes shallower. Also, when we choose the down-frequency coding signal, the delay profile decrease and the focal depth becomes deeper. With this method, SEAT can achieve dynamic focusing.
According to the simulation results, when the bandwidth of SEAT is around 80%, the DOF of SEAT can be improved by 83% with the up-frequency coding signal and 133% with the down-frequency coding signal. But, the focus point still remains un-change. The lateral resolution maintains at 100μm while using up and down-frequency coding signal. When the bandwidth of SEAT is reduced to 10%, the DOF can be improved around 280% and the focal point can be shifted by 0.6mm. The tradeoff is that the lateral beam width of SEAT is increased. Based on the experiment results, the DOF of an 80% bandwidth SEAT can be improved around 55% with the up-frequency coding signal and 64% with the down-frequency coding signal. The lateral resolution of SEAT still maintains at 100μm. In this study, we demonstrate the frequency encoded aperture improves the DOF of SEAT. However, dynamic focusing on SEAT can be only achieved when the bandwidth of SEAT is sufficiently low.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:34:28Z (GMT). No. of bitstreams: 1
ntu-101-R97945009-1.pdf: 3119252 bytes, checksum: 5bd5324a009747ae121edc5718b97b4c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 7
1.2.1 超音波探頭基本架構 7
1.2.2 探頭效能評估 11
1.2.3環形探頭 13
1.3 論文架構 15
第二章 環形探頭有限元素模擬 16
2.1 有限元素分析 16
2.2 環形探頭之有限元素分析 18
2.2.1 建立模型 18
2.2.2聲波模擬結果 19
2.3 角頻譜法聲場模擬 22
2.3.1 角頻譜法 22
2.3.2 環形探頭聲場模擬 23
第三章 環形探頭製作與量測 28
3.1 環形探頭製作 28
3.1.1 製作過程 28
3.2 環形探頭量測 31
3.2.1 回波訊號量測 31
3.2.2 聲場量測 33
3.2.3 線仿體量測 35
第四章 頻率編碼孔徑 38
4.1編碼波型設計 38
4.2 頻率編碼孔徑之聲場模擬 40
4.3 頻率編碼孔徑之聲場量測 42
第五章結果與討論 44
5.1 環形探頭之模擬與製作 44
5.2 環形探頭之景深改善 45
5.3 環形探頭之聚焦特性討論 46
第六章結論與未來工作 51
6.1 結論 51
6.2 未來工作 52
參考文獻 53
dc.language.isozh-TW
dc.subject降頻編碼訊號zh_TW
dc.subject景深範圍zh_TW
dc.subject發射聚焦zh_TW
dc.subject頻率編碼孔徑zh_TW
dc.subject升頻編碼訊號zh_TW
dc.subject環形探頭zh_TW
dc.subjectdynamic focusingen
dc.subjectSEATen
dc.subjectfrequency encoded apertureen
dc.subjectup-frequency coding signalen
dc.subjectdown-frequency coding signalen
dc.subjectDOFen
dc.title環形探頭之景深改善zh_TW
dc.titleImproving Depth of Focus for Single Element Annular Transducersen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江惠華(Hui-Hua Chiang),王士豪(Shyh-Hau Wang),鄭耿璽(Gen-Cy Jeng),沈哲州(Che-Chou Shen)
dc.subject.keyword環形探頭,頻率編碼孔徑,升頻編碼訊號,降頻編碼訊號,景深範圍,發射聚焦,zh_TW
dc.subject.keywordSEAT,frequency encoded aperture,up-frequency coding signal,down-frequency coding signal,DOF,dynamic focusing,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2012-02-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved